凍結過程にある土中のアイスレンズ近傍の水分・熱移動

515325 佐伯 知香 (土壤圈循環学教育研究分野)

1. はじめに

軟弱地盤の補強や地下水の止水に凍土を用いる 工法を地盤凍結工法という。土が凍結すると凍結 面近傍に水が引き寄せられ土粒子を含まない氷の 結晶(アイスレンズ)として析出することがある。 アイスレンズの析出は土の体積膨張や地盤の隆起

(凍上)を引き起こすため、地盤凍結工法の施工 にはその対策が必要不可欠である。凍上対策を行 うためには凍上量を正確に予測することが重要と なる。現行の凍上量予測モデルの精度向上には、 アイスレンズ近傍の土中水圧力や熱流の微視的な 評価が必要である。近年、小型センサの開発が進 み、こうした微視的測定が可能になりつつある。 そこで本研究では、これらの小型センサを用い、 凍上過程にある土中のアイスレンズ近傍の水分・ 熱移動を測定、解析することを目的とした。

2. 試料と方法

壁面にワセリンを塗布した内径 7.7 cm、高さ 6.6 cmのアクリルカラムに、水分過飽和状態の藤の森 シルトを充填した。カラム側面から熱電対7本 (0.5, 2.3, 2.8, 3.3, 3.8, 4.3, 6.1 cm 深)、直径 0.5 cm のテンシオメータを3個(3.3, 3.8, 4.3 cm 深)、0.9 ×1×0.025 cm の小型熱流板 2 枚 (3.8, 4.3 cm 深) 設置した。カラム上下端をアルミ製温度制御装置 で閉じ、側面を断熱した。上端には凍上変位計を 取り付け、下端は地下水面となるように給水口を 設け、給水管と接続した(図1)。2℃の低温室に 装置を静置することで、カラムに初期温度分布を 与えると共に、一軸圧縮試験機で0.1 MPaの荷重 をかけ、試料の乾燥密度が 1.18 g/cm³になるよう 脱水圧密を行った。そして、上下端の温度制御装 置を表1のようにし、試料を上端から一次元的に 凍結させた。各センサをデータロガーに接続し、 凍結面近傍の地温、土中水圧力、熱フラックスを 1 分間隔でモニターした。また、アイスレンズの 位置や試料の様子を任意の時間に記録した。

3. 結果と考察

図 2 に#1 の実験で観察したアイスレンズの 写真を、図 3 にその際の凍上量とアイスレンズお よび 0℃面の位置を示す。上端を-6℃で冷却する と地温が急激に低下し、0℃面が 0.4 day で 2.9 cm 深まで低下した。その後の温度分布は一定となっ た。冷却開始後 1 day までは小さなアイスレンズ がまばらに析出するも凍上に至らなかった。1 day 以降から凍上が生じ、2.05 day までに 0.044 cm 隆 起した。冷却温度を-8, -10℃に低下すると 0℃面 はそれぞれ 3.2, 3.8 cm 深に達した。その際、いず れも 0℃面近傍にアイスレンズが発生し、-8℃冷 却時には 3 day で 0.265 cm の、-10℃冷却時には 1.95 day で 0.186 cm の凍上が生じた。実験終了時 の総凍上量は 0.495 cm だった。同様の凍上過程が 他の温度条件の実験でも観察された。

図1.装置概要

表1.上下端の設定温度と継続時間

		実験番号				
		#1	#2	#3	#4	#5
上端 温度	−6°C	2.05 day	3.9 day	4.01 day	2 day	3 day
	−8°C	3 day	2.5 day	2.2 day	2 day	
	−10°C	1.95 day	1.6 day	1.79 day		
下端温度		6°C	4°C	4°C	6°C	6°C

図4に#1の実験の小型熱流板で測定した熱フ ラックスを示す。2枚の熱流板は-6℃冷却時には アイスレンズからそれぞれ2,2.5 cm 未凍土側に、 -8℃冷却時には0.8,1.5 cm 未凍土側に位置した。 また、-10℃冷却時には3.8 cm 深の熱流板はアイ スレンズ直下に、4.3 cm 深の熱流板は0.5 cm 未凍 土側に位置した。各深さの熱フラックスは、冷却 温度に下げると急激に、その後は緩やかに上昇し た。0.4 ~0.5 day でおおよそ定常に達し、地温の 変化もなくなった。熱フラックスはアイスレンズ に近いほど大きくなった。アイスレンズ近傍では 温度勾配が大きくなっていると考えられる。ま た、アイスレンズ直下においても熱フラックスに 大きな変動はみられず、アイスレンズの潜熱によ る局所的な熱フラックスの変化は生じなかった。

図5に#2の実験で測定した土中水圧力を示す。 3 個のテンシオメータそれぞれの温度は、-6℃冷 却時には0.6, 1.7, 2.5℃、-8℃冷却時には-0.6, 0.2、 1.2℃、-10℃冷却時には-1.6, -0.9, -0.1℃だった。 試料の温度変化が落ち着き、熱フラックスやアイ スレンズの成長が定常に近づくと、各深さの土中 水圧力もおおよそ一定になった。この圧力差とダ ルシー則から水分フラックスを求めると、アイス レンズに向けて 0.1 cm/day の水分フラックスが生 じているといえる。供給量がすべてアイスレンズ の成長に使われたと考えると、氷と水の密度比か ら凍上速度は 0.09 cm/day といえる。一方、アイス レンズ発生時には負圧が生じた。アイスレンズ成 長初期の急激な吸水に、未凍土からの水分移動が 追いつかなかったためと考えられる。そこで、こ のときのアイスレンズ成長面近傍の負圧分布を 調べた。図6に-6℃に冷却開始後0.02, 0.2, 0.4 day の負圧分布を示す。横軸は 0℃面からの距離とし た。アイスレンズが発生すると(0.02 day)、アイ スレンズ成長面から負圧領域が 4 cm 程度広がり はじめ、0.2 day で負圧が最大となった。その後徐 々に負圧領域は消失したが、アイスレンズ成長面 近傍の負圧はしばらく続いた(0.4 day)。こうし た負圧領域の進退は、アイスレンズの成長や次の アイスレンズ発生に影響を及ぼすと考えられる。

