牛糞堆肥を施用した水田土中の窒素動態の観測

Observation of nitrogen dynamics in paddy soil applied with cow manure compost

土壌圏システム学研究分野 522M218 井手 海盛主査:渡辺 晋生

I はじめに

有機物を肥料として水田に施用する機会が 増えている. 土中の有機物中の有機態窒素 Org-N は無機化, 硝化を経てアンモニア態窒素 NH₄-N, 硝酸態窒素 NO₃-N となり作物に吸収 される.しかし,無機化や硝化量は土中の温度・ 水分量に依存し, 脱窒による N2 ガス化や, 土 中水流れに伴う溶脱により,土中の窒素量予測 は困難である. 最適時期に適切量の有機物を施 用するには、土中での窒素動態を明らかにする 必要がある.本研究では、水田に施用した有機 物由来の窒素動態を明らかにすることを目的 とし,現場観測から土中の NH₄-N, NO₃-N 変化 量とイネの窒素吸収変化量を明らかにする. そして,数値解析で硝化,脱窒も考慮し,反応 速度定数に温度・水分依存性を与えることで, 水分・熱移動式とともに窒素移動を計算した.

II 窒素の形態変化反応速度および収支<u>1. 形態変化反応速度</u>

無機化,硝化,脱窒の反応速度は一次分解反 応式で表されることが多い(式1).

$$\frac{d}{dt}C_{\rm NH_4-N} = k_{\rm min}C_{\rm org-N}$$
$$\frac{d}{dt}C_{\rm NO_3-N} = k_{\rm nit}C_{\rm NH_4-N} \qquad (\not \exists 1)$$

$$\frac{d}{dt}C_{\rm N_2} = k_{\rm den}C_{\rm NO_3-N}$$

ここで, *k*_{min}, *k*_{nit}, *k*_{den} [/d]はそれぞれ無機化, 硝化, 脱窒速度定数である.

<u>2. 窒素収支</u>

NH₄-N の揮発を無視できるとすると, 無機化 量は次の収支式で表される(式 2).

$$\mathbf{N}_{\underline{m}\underline{K}\underline{U}} = \mathbf{N}_{\underline{p}\underline{v}\underline{u}} + \mathbf{N}_{\underline{W}\underline{v}} + \mathbf{N}_{\underline{\partial}\underline{\sigma}} + \mathbf{N}_{\underline{H}\underline{s}\underline{v}} \quad (\underline{\tau}, 2)$$

ここで,N_{貯留} [g/m²]は NH₄-N, NO₃-N の土中 変化量,N_{吸収},N_{浸透} [g/m²]は溶存 NH₄-N, NO₃-N の作物吸収量,下方浸透量である.

III 現場観測

1.調査圃場と方法

三重大学内圃場に 2.25 m²の水田 8 区画を準 備した(Table1, Plot1-8). 2022年の 3/17 に CN 比 26 の牛糞堆肥を窒素換算で 0, 4, 8, 16 g/m² になるように 10 cm 深まで施用した (N0, N4, N8, N16 区とする). 5/1 まで全区画裸地で管 理し、代かきを行った 5/2 以降は湛水で管理し た. 5/31 に再度代かきを行った. 6/3 にイネ (コ シヒカリ)を移植し, 9/13 に収穫した. 栽培期 間中,生育段階毎に各区画からイネを2株採取 し, 生育調査を行った. 各部位(穂, 葉, 茎) の窒素含有率, 乾物重を測定し, 窒素含有率と 乾物重の積から窒素吸収量を算出した. 期間中 圃場の2m気温,降水量,日射量,湛水深, 土中 5, 15, 25 cm 深の地温, 体積含水率, 土 中15,25 cm 深の土中水圧力を10分間隔でモ ニターした. また, 0-2, 2-10, 10-20, 20-25 cm

Table.1 Experimental set up

Plot Number	8	7	6	5	4		3	2	1
Plot Name	N0	N8	N16	N4	N)	N8	N4	N16
Plot	Amount of Manure		Amount of Cattle manure (g/m ²)						
Name	(g/m²)			Nitrog	gen		Phos phorus	Pot	assium
N16	2388.1		16.) 9.5		2	23.8		
N8	1194.0			8.0			4.7]	1.9
N4	597.0		4.0			2.4		5.9	
N0	0.0			0.0			0.0		0.0

深の土を隔週で採取した.採取した土の全量 NH₄-N と NO₃-N を, 10 %KCl と蒸留水で抽出 し, 吸光光度計で測定した. N0-N16 区は2連 で行い, 平均値を各 N 区の値とした. 同圃場 の全量 NH₄-N に対する溶存 NH₄-N の割合(永 源, 2022)から 20-25 cm 深の溶存 NH₄-N を算 出し、土中水圧力、透水係数、20-25 cm 深の溶 存 NH₄-N と NO₃-N から窒素の下方浸透量を求 めた. N0 区の無機態窒素量 (NH₄-N と NO₃-N の和)を土に元来含まれている有機物由来の無 機態窒素量 Min-N Soil とし、牛糞堆肥施用区 の無機態窒素量から引いた値を牛糞堆肥由来 の無機態窒素量 Min-N CM とした. 同様に N0 区のイネの窒素吸収量,下方浸透量を土に元来 含まれている有機物由来のイネの窒素吸収量 Uptake Soil, 下方浸透量 Leaching Soil とし, 牛糞堆肥施用区のイネの窒素吸収量,下方浸透 量から引いた値を牛糞堆肥由来のイネの窒素 吸収量 Uptake CM, 下方浸透量 Leaching CM とした.

<u>2. 結果</u>

Fig.1(a) に 5, 25 cm 深の日平均含水率と湛 水深,(b)に5,25 cm 深の日平均地温を示す. 4/4-4/13 にかけて日平均含水率は減少し、5、 25 cm 深はそれぞれ 0.16, 0.35 cm³/cm³まで減 少した. 湛水を開始した 5/2 以降の日平均含水 率は、両深度とも最大値を維持した.また、全 期間の5,25 cm 深の日平均地温には違いがみ られなかった. Fig.2 に N0, N16 区の 3/17-6/3 の NH₄-N 分布を示す. 両区画とも 4/30 にかけ て増減は小さかったが、5/31 にかけて 0-10 cm 深で増加し, N16区のほうが増加量が大きかっ た. 代かき前後の 5/31-6/3 は全深度で増加した. 代かきによる土壌攪乱と酸素供給が土壌微生 物を活性化し,無機化速度を増加させたと考え られる.Fig.3にN0,N16区の窒素収支を示す. 両図に 0-25 cm 深の Min-N Soil, Min-N CM, Uptake Soil, Uptake CM, Leaching Soil, Leaching CM の積み上げを示す. 湛水期間の

Min-N_Soil, Min-N_CM 増加量は, 5/14-5/31 は
0.03, 0.05 g/m²/d に対し, 代かき前後の
5/31-6/3 は 0.70, 0.16 g/m²/d だった. 移植後か
ら 6/20 にかけて Min-N_CM は 0.25 g/m²増加
し, 以降はイネの吸収によって減少した.
Uptake_CM は移植後から 7/7 にかけて 1.37 g/m²
増加し, 7/24 にかけて 0.53 g/m²まで減少した.

8/11 は 3.06 g/m²まで増加し、収穫時期まで変 化はなかった. 9/13 の各施肥区の Uptake_CM は, N4-N0, N8-N0, N16-N0 区でそれぞれ 0.84, 3.09, 3.00 g/m²と, それぞれ施肥量の 20, 38, 19 %だった.

IV 数值解析

<u>1. 方法</u>

深さ 100 cm を計算領域とし, 採土深から 0-2, 2-10, 10-20, 20-30, 30-100 cm の 5 層と した. 土中の水分移動はリチャーズ式を実測か ら得た水分特性を用い (Fig.4), 熱移動は熱移 動式を用いることで圃場の水分・熱移動を再現 した. 溶質移動は移流分散方程式と一次分解 反応式 (式 1) を用いて計算した. ここで, *k*_{min}, *k*_{nit}, *k*_{den} に温度・水分依存性を与えた (Fig.5, 6)。*k*_{min} の温度依存性は永源 (2022) より *T*_{soil} = 0 ℃で *k*_{min} = 0.0001 /d と仮定した指 数関数を与えた (式 3).

 $k_{\min}(T_{\text{soil}}) = 0.0001 \exp(B \cdot T_{\text{soil}}) \qquad (\vec{\mathfrak{X}} 3)$

B[/℃]は定数, T_{soil} [℃]は地温である. B を各区 画で変えることで、土中の NH4-N と一致する ようにした.水分依存性は(式3)に乗じる関 数 fm (θ) とし, 体積含水率 θ=0.0, 0.23, 0.28, 0.45 で $f_{\rm m}$ (θ) = 0, 1, 1, 0.6 とした. $k_{\rm nit}$ の 温度・水分依存性はそれぞれ knit (25 ℃, $0.30 \text{ cm}^3/\text{cm}^3$) に乗じる関数 f_n (T_{soil}), f_n (θ) と し, f_n (T_{soil}) は $T_{soil} = 15$, 25 °C で 0.07, 1, f_n (θ) は θ = 0.15, 0.30, 0.45, で 0, 1, 0 とし た. k_{den} の温度・水分依存性はそれぞれ k_{den} $(20 \circ C <, 0.45 \text{ cm}^3/\text{cm}^3)$ に乗じる関数 $f_d(T_{\text{soil}})$, f_d (θ) とし、 f_d (T_{soil}) は $T_{soil} = 0$ 、20 ℃以上で 0, 1, $f_d(\theta)$ は $\theta = 0.27$, 0.45, で 0, 1, とし た. また, k_{nit} (25 °C, 0.30 cm³/cm³), k_{den} (20 °C <, 0.45 cm³/cm³) は武藤ら (2019) 等 を参考にそれぞれ 0.16, 0.1/d とした. 6/3 以降 は 2 cm 深まで酸化層があるとし,酸化層の $f_n(\theta), f_d(\theta) を 1, 0 とした. 計算期間を$ 3/17-5/30 と 6/3-9/13 に分けて行い、牛糞堆肥

由来の窒素について計算した. θ, T_{soil}, NH₄-N, NO₃-N の各期間の初期条件は実測に従い与えた. 3/17 の C_{org-N} は施肥量全量が含まれるとし, 10 cm 深まで均一に与えた. 6/3 の C_{org-N} は次式で求め, 10 cm 深まで均一に与えた (式 4). 6/3 C_{org-N}

= (3/17-5/31 に分解したC_{org-N}) (式 4) - (5/31-6/3 に増加したC_{min-N})

 $C_{\min-N}$ は無機態窒素量 $[g/m^2]$ である. 根の吸水 は Feddes モデルで表し, Singh et al., (2003)の イネのパラメータを与えた. 根の窒素吸収量は 受動吸収 Uptake_Pass. と能動吸収 Uptake_Act.

Fig.6 θ dependence of k_{\min} , k_{nit} and k_{den}

の和とし、測定値と一致するよう表した. Uptake_Pass. は吸水速度と溶存 NH₄-N, NO₃-N の積とした. Uptake_Act. は溶存 NH₄-N のみあ るとし、測定値から Uptake_Pass. を引くことで 求めた. 土中水の上端境界条件は気象データと Penman 式より与え、下端境界条件は一定圧力 (h=-1 cm) とした. 熱の上端境界条件は一定温度 $(T_{soil}=15 \text{ °C})$ とした. 溶質についてはフラッ クス境界条件を与えた.

<u>2. 結果</u>

Fig.7 に N16-N0 区の 4/20-5/31, 7/7-8/11 の NH4-N 分布を示す.計算は実測を概ね表すこと が出来た. Fig.8 に N16-N0 区の 0-25 cm 深の NH₄-N, NO₃-N, Uptake, Leaching の実測値と 計算値, 脱窒量の計算値を示す. NH₄-N の計算 値は, 8/11 以降で過大評価したものの, (式3) のパラメータ B を代かき前後で分けることで 概ね表せた (Table.2). NO₃-N の計算値は, 4/4-4/13 の乾燥期間で過小評価したが, 6/3 以 降は概ね表した. イネの窒素吸収量の計算値は, 実測値とよく一致した.収穫時のUptake Pass., Uptake Act. はそれぞれ 0.23, 3.03 g/m²と, ほ とんどが能動吸収だった. Leaching の計算値は, 5/31, 9/13 でそれぞれ 0.05, 0.57 g/m²と栽培期 間に多くなった. 脱窒量の計算値は, 5/31, 9/13 でそれぞれ 0.25, 1.25 g/m²と栽培期間に多くな った. 湛水状態で土壌が嫌気化し, 脱窒が促進 されたと考えられる. Table.3 に各施肥区の 施肥-収穫までの牛糞堆肥由来の窒素変化量を 示す.本研究で与えた仮定が正しければ,無機 化量は N4-N0, N8-N0, N16-N0 区でそれぞれ 2.41, 5.65, 6.05 g/m²と, それぞれ施肥量の 60, 71,38%だった.下方浸透量はN4-N0,N8-N0, N16-N0 区でそれぞれ 0.19, 0.32, 0.54 g/m²と, 施肥量に対し約 2-4 %であることが分かった. 脱窒量は N4-N0, N8-N0, N16-N0 区でそれぞ れ 0.94, 1.44, 1.25 g/m²と, それぞれ施肥量の 23, 18, 8%となった. 実際の現場では, 施用

した有機物由来の無機化速度は施肥量によら ず一定であると考えられるため,計算に用いた パラメータの感度解析やモデルの改善が今後 の課題である.

Table.2 Change "B" of Equation 3 for each plot

	/°C	3/17-5/31	5/31-6/3
N4-N0		0.18	0.16
N8-N0	В	0.16	0.19
N16-N0		0.15	0.19

	g/m ²	Mineralization	Soil Min-N	Leaching	Denitrification
N4-N0	Cal.	2.41	0.38	0.19	0.94
	Obs.		-0.02	0.04	
N8-N0	Cal.	5.65	0.76	0.32	1.44
	Obs.		-0.13	0.00	
N16-N0	Cal.	6.05	0.97	0.57	1.25
	Obs.		-0.03	0.04	

		g/m ²	Uptake_Pa	ass. Up	take_Act.
	N4-N0	Cal.	0.12		0.78
		Obs.		0.84	
	N8-N0	Cal.	0.34		2.79
		Obs.		3.10	
	N16-N0	Cal.	0.23		3.03
		Obs.		2.99	