蒸発と地表への塩の濃縮に土の凍結融解サイクルが与える影響

521M2S2 Han Weinan

生物資源学研究科 土壌圏システム学教育研究分野

中国の大慶地域では炭酸塩による地表の塩害が生じている.この地域の気候は半乾燥で、 季節的に凍結する地域に位置している。そこで本研究は、季節凍土地域における塩害発生メ カニズムを検討することを目的とした。異なる濃度の炭酸水素ナトリウム溶液あるいは塩 化ナトリウム溶液と混合した土を、高さ35cmのカラムに詰め、凍結融解サイクル実験およ び非凍結実験を行った。そして、この間の蒸発量を、土中の温度、体積含水率、および溶液 濃度とともに測定し、地表の塩の濃縮への影響を調べた.

キーワード: 凍土、炭酸水素ナトリウム、塩化ナトリウム、凍結融解、蒸発

1. はじめに

本研究で対象とする大慶地域は、中国東 北部の Songnen (松嫩) 平原に位置する。大 慶地域は、中国で最も土壌塩類化が深刻な 地域のひとつでもある (Zhang et al., 2007)。 アジアにおける乾燥地の分布を Fig.1 に示 す。大慶地域は半乾燥地に位置する。また、 大慶地域は季節凍土地域でもある。Fig.2に 示すように、大慶では春と秋に日中の気温 が0℃を超え、夜間の気温が0℃を下回る日 が1カ月以上続く。この期間の凍結と融解 の繰り返しが、地表からの水分蒸発や土の 塩類化に与える影響は未だ不明な点も多い。 乾燥した季節凍土地域における土壌の凍結 融解の繰り返しは、土壌深部からの土中水 の上昇移動を引き起こす可能性がある(Liu et al., 2021)。そして、凍結融解によって地表 に水分が集まることで可能蒸発散が維持さ れる期間が長くなり、地表への土壌深部か らの塩分の蓄積が促進される可能性が示唆 される (Jiang et al., 2010)。しかし、凍結融 解が繰り返された際の、水分と塩の挙動や、

Fig.1 Distribution of arid lands in Asia and the locations of study sites

Fig.2 Daily maximum and minimum temperature in Daqing area

蒸発に対する塩の影響の定量化については、 さらなる検討が必要である。地表の土壌が 凍結と融解を繰り返す際の土中の水分・塩 分移動をモデル化する場合、土中水の凍結 と融解のタイミングを決定することが重要 である。そして、凍結過程と融解過程での水 分と塩の分布が時間と共にどのように変化 するのかを明らかにするために、土の凍結 融解実験がしばしば行われる。凍土中の不 凍水量を推定

・計測する方法は数多く提案 されている (Watanabe et al. 2009)。そこで本 研究では、まず、地表の凍結融解過程におけ る土中の水分と塩分の吸い上げ過程を詳細 に観察すること、次に、凍結融解過程におけ る地表からの蒸発量を凍結に晒されない地 表からの蒸発量と比較すること、そして、土 中に含まれる塩の種類や濃度がこれらの吸 い上げや蒸発量に与える影響と、その結果、 表面に集積する塩の量を実験的に明らかに することを目的とし、土カラムを用いた凍 結融解サイクルの実験を行った。

2. 試料と方法

本研究で凍結融解実験に使用した土試料 は、岩手大学附属圃場休耕畑の黒ボク土で ある。土は自然乾燥させ、2mmメッシュで 篩い分けてから使用した。

使用した塩は、NaHCO₃と NaCl である。 溶液の濃度は、純水、NaHCO₃は 0.3 mol/L と 0.5 mol/L、NaCl は 0.5 mol/L とした。体 積含水率が 0.4 cm³/cm³、乾燥密度が 1.1 g/cm³ となるように土試料と溶液を混合し、 内径 7.8 cm、高さ 35 cm のアクリルカラム に充填した。Fig. 3 に実験概要を示す。試料 には 35 組の熱電対を 1 cm 深間隔でカラム 側壁より設置した。また、5 cm 深間隔で TDR センサーを設置し、地温と体積含水率、電気 伝導度を測定した。カラムの側面は断熱し、 上端は大気に開放し、下端は温度制御装置 に接続した。カラムをチャンバーに入れ、試 料を初期温度4℃に馴化した後、-10℃24時 間、10℃24時間の気温変化を3サイクル与 えることで、試料を上端から凍結・融解した。 この際、水分供給はなしとし、試料下端の温 度を4℃で一定とした。また、上端にはファ ンを配し蒸発を促進した。装置は電子天秤 上に設置し、実験中の蒸発量をモニターし た。また、対照として、試料を凍結に晒すこ となく気温を常に10℃に保持した非凍結実 験を行った。

Fig. 3 Schematic diagram of experimental set up

Fig.5 Changes in water content in soils (a) with no salt and (b) with 0.5 mol/L NaCl

3. 結果と考察

1. 土中の温度と体積含水率の経時変化

Fig.4-a,bは、塩無添加土とNaClを添加し た土の各深さの温度の経時変化である。実 線の色の違いは、土中の異なる深さを表し ている。凍結融解は3サイクル行った。凍 結過程では、地温は上部2.5 cmから急速に 低下し、下層になるほど地温の低下速度が 緩やかになった。また、32.5 cmは、35 cm に4℃の恒温端があるため、比較的温度変化 が小さかった。融解過程でも、地表面近くの 2.5 cm が最初に温まり始め、その後、時間 が経つにつれて徐々に下層の温度が上昇し た。また、土にNaClを添加すると、土中水 の凝固点が低下した一方、融解過程の地温 上昇が速くなった(Fig.4-b)。Fig.5-a,bは、 塩無添加土と NaCl を添加した土の各深さ の体積含水率の経時変化である。気温が 0℃ 以下に低下すると、土中の水分が凍結し、不 凍水量が徐々に減少した。各深さにおける 体積含水率(液状水量)は、表層から下層に 向かって徐々に減少した。融解過程に入る と、気温の上昇とともに土中の氷が融け、体 積含水率は再び上昇した。2.5 cm の体積含 水率は、融解過程にわずかに上昇した後、減 少に転じた。こうした上昇は、凍結過程に下 層から表面近傍に移動した水分の融解によ り、減少は蒸発によると考えられる。また、 土に NaCl を添加すると、塩無添加の土に比 べて体積含水率の変化が小さくなった (Fig.5-b)。

Fig.6 Water content profiles in samples during first (a,b) freeze and (c, d) thaw processes

2. 水分分布

Fig.6 は、塩無添加土と NaCl を添加した 土の最初の凍結融解サイクル各時間の体積 含水率分布を示す。凝固点以下の体積含水 率は不凍水量と見なす。Fig.6-a,bは、塩無添 加土と 0.5 mol/L の NaCl を添加した土の凍 結過程を、Fig.6-c,d は、塩無添加土と 0.5 mol/LのNaClを添加した土の融解過程をそ れぞれ示している。各試料の初期体積含水 率は0.4前後であることが確認できる。凍結 過程が始まると、地温が上端から徐々に低 下し、凍土中の不凍水量が次第に減少した。 時間の経過とともに、凍土中の氷量は増加 し、不凍水量(体積含水率)はさらに減少し た。1 サイクル目の凍結過程が終了した時点 (凍結開始後24時間)の含水率分布を比較 すると (Fig.6-a,b)、NaCl を添加した土の方 が不凍水量は高くなった。土に含まれる塩 分が、凝固点降下により土の凍結を阻害し ているといえる。融解過程が始まると、土中 の氷が融け、不凍水量が増加した。時間が経 過し、内部温度が上昇するにつれて、不凍水 量はさらに上昇した。そして、各試料中の氷 は36時間後には完全に融解した。融解過程 では、NaClを添加した土は塩無添加土より も早く融解した。30時間の水分分布を比較 すると、塩無添加土中には0.1 cm³/cm³程度 の氷が中層に残っているのに対し、NaClを 添加した土の内部には氷相は見られなかっ た。

Fig.7-a に凍結融解実験における、各凍結 融解サイクル終了時の体積含水率分布を示 す。融解過程が蒸発の主要な期間である。

Fig.7 Profiles of water content. (a-c) freeze-thaw experiment and (d-f) non-freeze experiments

そこで、Fig.7-b には非凍結実験における、 凍結融解実験各サイクルの融解終了時間に 相当する時間の体積含水率分布を示す。い ずれも試料は完全に融解しており、0h 対す る水分減少量は蒸発による減少分と見なせ る。いずれの試料においても、体積含水率が 徐々に減少していることがわかる。これは、 土中の水分が実験経過に伴って蒸発し、 徐々に減少しているためである。凍結融解 実験と非凍結実験を比較すると、凍結融解 実験の方が体積含水率の減少が塩添加の有 無にかかわらず大きかった。非凍結実験で は、上層の体積含水率は減少したが、下層の 体積含水率の減少は小さかった。特に、NaCl 添加土の下層の体積含水率はほとんど変化 しなかった。一方、凍結融解実験では、上層 の体積含水率の減少とともに、下層の体積 含水率も減少した。凍結融解サイクルによ り、下層の土中から上層の凍結面に向かっ て水分が移動したといえる。

凍結融解実験について、塩を無添加の試料と添加した試料を比べると(Fig.7-a,b)、 塩添加の試料の下層の含水率低下は、塩無 添加の試料に比べ小さかった。これは、塩に より凍結過程の水分上昇が生じにくかった ことと、凍結過程の水分上昇とともに移動 した塩により、地表近くの塩濃度が上昇し、 融解時に蒸発しにくくなったためと考えら れる。

Fig.8 (a) Cumulative evaporation and (b) profiles of sodium ion concentration

3. 積算蒸発量とナトリウムイオン濃度

Fig.8-a に積算蒸発量を示す。塩無添加の 3 サイクル後の凍結融解実験の積算蒸発量 は、3 サイクル相当の蒸発時間経過後の非凍 結実験よりもわずかに多くなった。非凍結 実験については、蒸発により上層の水分が 減少すると、可能蒸発が継続できなくなり、 蒸発速度が低下する。一方、凍結融解実験で は、凍結過程に下層から補給された水分が 融解過程にも表層に残り、可能蒸発の継続 期間が長く続く。こうした差が積算蒸発量 の違いに現れたと考えられる。

0.3 mol/L の NaHCO₃ 添加試料についても、 凍結融解実験の積算蒸発量は非凍結実験よ り大きくなった。しかし、塩を添加すると、 塩無添加の試料に比べ、積算蒸発量は減少 した。これは、土表面に塩分が蓄積して水ポ テンシャルが低下し、また、塩分の存在によ り土粒子への吸着水量の増加し、蒸発が困 難になったためと、凍結時の氷量の低下に より下層から表層への水分供給量が減り、 可能蒸発の継続時間が短くなったためと考 えられる。NaHCO₃ 溶液の濃度が 0.5 mol/L と高くなると、積算蒸発量は更に減少した。 NaCl を添加した土は、積算蒸発量が最も少 なかった。解離度の大きな塩ほど、蒸発をより顕著に抑制するといえる。

Fig.8-b に土中のナトリウムイオン濃度を 示す。表層の塩濃度は下層の塩濃度より、は るかに高くなった。何れの試料においても 蒸発により地表に塩が蓄積した。オレンジ 破線は0.3 mol/LのNaHCO3を添加した試料 であるが、地表の Na 量は凍結融解実験では 1.02 mol/dm³soil に達したが、非凍結条件では 0.83 mol/dm³soil であった。凍結融解サイクル が表層への塩の蓄積を促進したとみなせる。 0.5 mol/L の NaCl を添加した土の表層濃度 も、凍結融解条件では 2.02 mol/dm³soil に達 したが、非凍結条件では 1.86mol/dm³soil であ った。同じ塩濃度では、NaClの方が NaHCO3 より表層の Na 濃度が高くなった。NaCl は NaHCO3と異なりほぼ完全に解離するため、 表層への塩類蓄積が生じやすいと考えられ る。