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DISCLAIMER

This report documents version 2.1 of CXTFIT (updated in November, 1998), a computer
program for estimating solute transport parameters from observed concentrations (the inverse
problem) or for predicting solute concentrations (the direct problem) using the convection-dispersion
equation as the transport model. CXTFIT 2.1 is a public domain code, and as such may be used and
copied freely. The code has been verified against a large number of test cases. However, no
warranty is given that the program is completely error-free. If you do encounter problems with the

code, find errors, or have suggestions for improvement, please contact one of the authors! at

U. S. Salinity Laboratory
USDA, ARS

450 West Big Springs Road
Riverside, CA 92507-4617

Phone (909) 369-4850
Fax  (909) 342-4964
e-mail nobuo@cc.saga-u.ac.jp

'The senior author may be reached at: Dept. of Agricultural Sciences, Saga Univ., Saga 840-
8502, Japan. Phone: +81-952-28-8756; Fax: +81-952-28-8709; E-mail: nobuo@cc.saga-u.ac.jp.
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ABSTRACT

N. Toride, F. J. Leij, and M. Th. van Genuchten. The CXTFIT Code for Estimating Transport
Parameters from Laboratory or Field Tracer Experiments, Version 2.1, Research Report No. 137,
U. S. Salinity Laboratory, USDA, ARS, Riverside, CA.

The successful prediction of the fate and transport of solutes in the subsurface hinges on the
availability of accurate transport parameters. We modified and updated the CXTFIT code of Parker
andvan Genuchten[1984b] for estimating solute transport parameters using a nonlinear least-squares
parameter optimization method. The program may be used to solve the inverse problem by fitting
mathematical solutions of theoretical transport models, based upon the convection-dispersion
equation (CDE), to experimental results. This approach allows parameters in the transport models
to be quantified. The program may also be used to solve the direct or forward problem to determine
the concentration as a function of time and/or position. Three different one-dimensional transport
models are included: (i) the conventional CDE; (ii) the chemical and physical nonequilibrium CDE;
and (iii) a stochastic stream tube model based upon the local-scale CDE with equilibrium or
nonequilibrium adsorption. The two independent stochastic parameters in the stream-tube model are
the pore-water velocity, v, and either the dispersion coefﬁcient; D, the distribution coefficient, X, or
the nonequilibrium rate parameter, a. These pairs of stochastic parameters were described with a
bivariate lognormal probability density function (pdf). Examples are given on how transport
parameters may be determined from laboratory or field tracer experiments for several types of initial
and boundary conditions, as well as different zero-order production proﬁles. A detailed description
is provided of the computer program, including the subroutines used to evaluate the analytical
solutions for optimizing model parameters. Input and output files for all major problems are included

in this manual.

Keywords: Solute transport, parameter estimation, convection-dispersion equation, analytical

solutions, nonequilibrium transport, stochastic transport, stream tube model.
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1. INTRODUCTION

The fate and movement of dissolved substances in soils and groundwater .has generated
considerable interest out of concern for the quality of the subsurface environment. The behavior of
solutes over relatively long spatial and temporal scales has to be assessed with the help of theoretical
models since it is usually not feasible to carry out experimental studies over sufficiently long distances
and/or time periods. Mathematical models are often used to predict solute concentrations before
management strategies are implemented. Advances in software and hardware now permit the
simulation of subsurface transport using sophisticated mathematical models. Unfortunately, it is
generally difficult to obtain reliable values for transport parameters such as the pore-water velocity,
the retardation factor, the dispersion coefficient, and degradation or production parameters.

The program CXTFIT 2.1 may be used to estimate parameters in several models for transport
during steady one-dimensional flow by fitting the parameters to observed laboratory or field data
obtained from solute displacement experiments. The inverse problem is solved by minimizing an
objective function, which consists of the sum of the squared differences between observed and fitted
concentrations. The objective function is minimized using a nonlinear least-squares inversion method
- according to Marquardt [1963]. In addition, CXTFIT 2.1 may also be used for the direct problem
to predict solute distributions versus time and/or space for specified model parameters.

CXTFIT 2.1 is an extension and update of an earlier version program published more than ten
years ago by Parker and van Genuchten [1984b]. The new CXTFIT, version 2.1, again uses the
convection-dispersion equation, but with a greater number of analytical solutions to various initial,
boundary, and production value problems. The nonequilibrium transport models now contains also
terms for zero-order production and first-order decay. Considerably more attention is being paid to
the use of stream tube models for simulating transport in heterogenous fields, thus reflecting the
growing popularity of stochastic approaches for modeling field-scale solute transport. A bivariate
lognormal probability density function is used to quantify stochastic flow and either stochastic
dispersion, adsorption, or nonequilibrium solute transfer. Solute concentrations across the field can
be in the resident mode or in two different types of flux-averaged modes.

This report serves to document the CXTFIT 2.1 computer program. Equilibrium transport

according to the convection-dispersion equation (CDE) is reviewed in Chapter 2. The mathematical
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problem is first stated, and solutions for the initial value problem (IVP), the boundary value problem
(BVP), and the production value problem (PVP) are listed. The program may be used to estimate
the pore-water velocity (v), the dispersion coefficient (D), the retardation factor (R), the first-order
degradation coefficient (u), and/or the zero-order production coefficient () from observed
concentration distributions versus time and/or distance. Nonequilibrium transport is discussed in
Chapter 3 in terms of alternative physical and chemical nonequilibrium models. Solutions of the
(bimodal) dimensionless nonequilibrium transport equation are presented for the same cases as for
equilibrium transport. In addition to v, D, R, u, and ¥, the coefficient of partitioning between the
equilibrium and nonequilibrium phases () and the mass transfer coefficient (@) for transfer between
the two phases can now be fitted as well. Chapter 4 describes the stream tube model as a relatively
simple conceptualization of solute transport in heterogeneous fields. Transport in each stream tube
(the local scale) is described with the CDE as an initial or a boundary value problem. Pairs of
stochastic parameters, one always being v, are used in solutions of the CDE Transport at the field
scale is subsequently modeled by averaging the local concentratlons

Chapter S provides details about the numerical evaluation of some of the analytical functions,
including the numerical integration procedures. This chapter also gives an outline of the parameter
- estimation procedure. Chapter 6 serves as user's guide for the program. This chapter lists all
available transport models and gives instructions on how to solve the inverse problem. All possible
variables in the input file are documented in terms of separate blocks. The blocks pertain to model
selection, solution of the inverse problem, definition of transport parameters, stipulation of boundary,
initial, as well as production conditions, and specification of times and positions for which the direct
problem is to be solved. Examples of input and output files are also provided. The examples are
those given on the diskette accompanying this manual. Finally, Chapter 7 illustrates the use of

CXTFIT 2.1 for several forward and inverse problems.




2. DETERMINISTIC EQUILIBRIUM CDE

2.1. Transport Model

The convection-dispersion equation (CDE) for one-dimensional transport of reactive solutes,
subject to adsorption, first-order degradation, and zero-order production, in a homogeneous soil, is
written as |

P d dc

3;(00’ +PpS) = 8_32[ 0Da—x' —ch) - Ouyc, - pyu,s+0yfx)+p,vx) 2.1
where c, is the volume-averaged or resident concentration of the liquid phase (ML?), s is the
concentration of the adsorbed phase (MM™), D is the dispersion coefficient (L’T™), Ois the volu-
metric water content (L’L?), J, is the volumetric water flux density (LT), p, is the soil bulk density
(ML), u, and p, are first-order decay coefficients for degradation of the solute in the liquid and
adsorbed phases, respectively (T™); y,(ML>T") and y, (MMT") are zero-order production terms
for the liquid and adsorbed phases, respectively; x is distance (L), and # is time (T). We assume that

i cannot be negative. Note that the production functions are given as a function of distance.

Solute adsorption by the solid phase is described with a linear isotherm as
s = Kyc, (22)
where K, is an empirical distribution constant (M'L?). Using (2.2) and assuming steady-state flow
in a homogeneous soil, (2.1) may be rewritten as
R%=D9—2—&—v—a—€i—yc + y(x) 23)
ot ax? ox r

where v (= J,/0) is the average pore-water velocity, R is the retardation factor given by

K
R=1+ 224 2.4)

0

and u and y are combined first- and zero-order rate coefficients:
Py K, 1,
N @.5)
Py ¥s(¥)

y (@) = 7,0 + = 5 2.6)




identical, (2.5) reduces to 4 = u R (Section 4.1). »
Table 2.1 lists the dimensionless parameters that allow (2.3) to be written in reduced form as

aC, 1&C, aC
R -

r

= - - uEC, + yE | 2.7
T Pap oz HEOTTO 2.7

where C, is the reduced volume-averaged solute concentration, P is the Peclet number, 4 is a first-
order deca(y coefficient (= Lu/v), ¥* is a zero-order production coefficient for equilibrium transport

(=Lylve,), and Z and T are the dimensionless space and time variables, respectively.

Table 2.1. Dimensionless Parameters for the Equilibrium CDE}

Parameters T zZ P R C u ¥
Expressi vie x vLo Ak, ¢ L@uppKp) LOvtpv)
Xpressions I I D 5 c. 5 6vco

t ¢, and L represent a characteristic concentration and length, respectively.

2.2. Analytical Solutions

Solutions of the CDE will be presented in terms of the above dimensionless parameters.
Dimensional solutions can be easily obtained by substituting the parameters listed in Table 2.1 back

into the dimensionless solutions.

Resident Concentration
Analytical solutions of (2.7) are included in CXTFIT 2.1 for relatively simple initial and boundary

conditions. The general initial condition is given by ’
C(2,0) = C,(2) (2.8)

Note that when the first-order degradation coefficients in the liquid (x,) and adsorbed (u,) phases are
where C; is the initial concentration as a function of Z. Either a first-ora third-typé condition is used

for the inlet boundary, i.e.,
C.(0,7) = C(T) . (2.9a)
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or

3C,0,7)

1
0D - 3%

= C,(D) @)

where C,, is the input concentration as a function of 7. The third-type boundary condition (2.9b) in

terms of dimensional parameters is given as

dc,(0,1)
0

ve,(0,7) - D = ve (1) (2.10)

where c, (7) represents a dimensional concentration that depends on real ﬁme, t. We will present
solutions for both first- and third-type inlet conditions. Note that a third-type inlet condition is to be
preferred for most transport scenarios since it conserves mass if we ignore dispersion outside the soil
[van Genuchten and Parker, 1984, Parker and van Genuchten, 1984a; van Genuchten and Parker,
1994].

The outlet condition for an effectively semi-infinite system is giveri by

azr (=,T) =0 (2.11a)

Although no "correct" outlet condition can probably be formulated for finite systems [Parlange et

al., 1992], a zero concentration gradient is often used for a finite system of length L:

aC

aZ’ (1,1) = 0 (2.11b)

This condition is based on the assumption that the concentration is macroscopically continuous at the
outlet and that no dispersion occurs outside the soil [Danckwerts, 1953; Wehner and Wilhelm, 1956].
Solutions for an infinite outlet condition can be applied to the finite region 0 < x < L by making the
assumption that upstream solute concentrations are not affected by the outlet boundary [Parker and
van Genuchten, 1984a]. All solutions in this report are based on the infinite outlet condition (2.11a).

In addition to the resident solution concentration, we define the total resident concentration as

the amount of solute per unit volume of soil solution:

C,=RC, 2.12)




Flux-Averaged Concentration

The injection and detection modes for several solute displacement experiments may require the
use of flux-averaged or flowing concentrations in the mathematical model [Kreft and Zuber, 1978;
Parker and van Genuchten, 1984a]. Flux-averaged concentrations are defined as the ratio of the
solute and water fluxes; they occur, for example, if a solute breakthrough curve is determined from
effluent samples. The specification of the type of concentration is discussed in Chapter 7.

For transport according to the CDE, the flux-averaged concentration can be obtained from the
resident concentration using the transformation:

1 oC,

C.=C -= 2.13
ror o poaz 2.13)

where the subscript frefers to a flux-averaged concentration. Expressions for C;are easily derived
by substituting the solution for C, for a third-type inlet condition into (2.13). We may drop the
subscript of C if the difference between the two concentration modes is immaterial or ifit is clear that

we refer to a resident concentration.

Superposition
Since the governing equations and the initial and boundary conditions are linear in C, the
superposition principle — as explained, for example, in Farlow [1982] — may be used to express the
analytical solution as the sum of three independent subproblems involving a boundary value problem
(BVP), an initial value problem (IVP), and a production value problem (PVP). The overall solution
can then be written as ‘
CZn =C8zDn +~ Clzn + CPzZD (2.149)
where the superscripts B, I and P denote the boundary, initial, and production value problems,
respectively. We first present the general solution to each subproblem, subsequently we give several

specific solutions.




2.2.1. Boundary Value Problem (BVP)

General Solution

The general solution of the BVP is given by

T
C%ZD=fgdﬂﬂf@ﬂﬁ (2.15)

0
where the auxiliary function I'}” is defined in Table 2.2. Note that I, is identical for Crand C,ifa
first-type inlet condition is used. General expression (2.15) will be used to obtain specific solutions

for an input concentration, C,(T), given by Dirac delta, multiple pulse, and exponential functions.

Specific Solution
1. Dirac Delta Input. For instantaneous solute application, C(7) may be written as

C, (D) = M, o(T) (2.16a)
where &(T) is the Dirac delta (unit impulse) function, and M, is a dimensionless amount of applied

solute. A dimensional Dirac delta input may be given by
&
c(H=—=06() (2.16b)
v

where &f) is a Dirac function with respect to # (T"), and m; is the total amount of mass added to a
unit area of the soil liquid phase (ML?). The dimensional and dimensionless Dirac inlet conditions
are related as &7) = L&f)/v, with M, = m y/(Lc,). The following properties of the Dirac delta

function were used to evaluate the general solution:

f o(dr=1 (2.17a)
0
and, for any continuous function G(?),
f o (HG(t)dt = G(0) (2.17b)
0
fé(t -a)G(t)dt = G(a) (2.17¢)
0




Substitution of (2.16a) into (2.15) leads to

CHzZT) = My (ZT) (2.18)

This solution is sometimes referred to as the travel time probability density function (pdf) for the

equilibrium CDE [Jury and Roth, 1990].

2. Multiple Pulse Input Conditions. The input

concentration for a series of successive applications

fq
Co(T) fy

of rectangular (constant) solute pulses, as illustrated

in Figure 2.1, can be expressed as
CD=f  TsI<T,

i+1 f, fos

(2.19)

(i=1,2,..,n; T,=0 and T,, -~ =)

n+l

1 | 1 /\/ i N
T, T, T, T T. 7
where f; (i = 1,2,..,n) is constant. The analytical

solution for this case may be written as the following Figure 2.1. Multiple pulse input.

sum of the solutions for the individual pulses:
CP@EZD)= Y (-f )G @ZT-T;uf)  (i=12,..,n;f,=0) (2.20)
<1

where G*(Z,T;, 4i¥) is listed in Table 2.3. Note that the formulations for G,%(Z, T:uF) for u*=0 and
4E + 0 are different [van Genuchten and Alves, 1982].

3. Exponential Input Function. The exponential input concentration function is given by

CT) = f, + fyexp (- 4% T) (2.21)
where f,, f;, and A® are constants. Substitution of (2.21) into (2.15), and integration, yields '
CE(ZT) = £, GEE.T:4E) + £, exp(- P T) G (Z,T 4 - RIP) @22)

where G,*(Z,T.£)) is again given in Table 2.3. Inthis solution, a distinction needs to be made between
02=0(.e, 4®=RA®) and 2+0. Furthermore, when A® > (4 + P/4)/R, it is necessary to evaluate the
general expression for G,*(Z,T) numerically since the parameter  in Table 2.3 becomes complex.

CXTFIT 2.1 internally selects the appropriate expression for G,*(Z, 7).
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2.2.2. Initial Value Problem (IVP)

General Solution

The general solution of the IVP is given by

cﬂam=fqmﬁ@mnw 2.23)
0

where I',’(Z, ,7) is listed in Table 2.2. Specific solutions of the IVP are obtained for the same type
of C(Z) functions as for C ,(7) in the BVP as discussed in the previous section, i.e., Dirac delta,

stepwise, and exponential initial distributions.

Specific Solution
L. Dirac Delta Initial Distribution. When all of the solute is initially located at position Z = Z,, the
initial concentration distribution C(Z) may be written as

C@) =M, 6(Z-2) A (2.24a)
where &(Z) is the Dirac delta function, and M, is a relative amount of solute in the liquid phase. For

a dimensional distance, x, the Dirac initial condition may be given by
m;
Ci(x) = ——0— 6(x "xl) (224b)

where &(x) is the Dirac function with respect to x [L'], and m, is the amount of mass initially present
in the liquid phase per unit area of soil [ML?] at x =x,. The total amount of mass per unit soil area
is given by m; R. Dimensional and dimensionless initial conditions are related according to &Z) =

L&x) with M, =m,/(6Lc,). Substitution of (2.24a) into (2.23) yields
ClzT) = M,T;(2,2,T) (2.25)

Notice that for a third-type inlet condition, the resident concentration according to (2.25) for Z, =
0in (2.24a) — i.e., solutes reside initially at the soil surface — is identical to solution (2.18) for the
BVP with a Dirac input since I'*(Z,7) = I',5(Z,Z,=0,T) in Table 2.2.




2. Stepwise Initial Distribution. A stepwise initial concentration distribution, consisting of » step

functions, may be written in the form where

N
U,
C@ =1, ZisZ<Z,,
(2.26) .
(=12,.,n; Z,=0 and Z - ) Ci(2)
U, U,
U, is a constant. Figure 2.2 shows an example U, [
N . U,
of such a stepwise initial concentration U,
distribution. The analytical solution can again L | «
be written as the sum of solutions of the IVP z, 2, 2, 2, /\/ Z, 4

for a single pulse:
Figure 2.2. Stepwise initial distribution.

CZn =Y U-U ) WECT,Z)  (=12,.1U,=0) 2.27)
i=1

where ¥,” is listed in Table 2.2 [cf. AS and A6 of van Genuchten and Alves, 1982]. For a uniform
initial concentration (i.e., n = 1; C;= U, for 0sZ<w), the expression for Cis identical to that of C,

for a first-type inlet condition [Parker and van Genuchten, 1984b; Toride et al., 1993a, 1993b].

3. Exponential Initial Distribution. The IVP can also be solved for an initial condition that changes

exponentially with distance:

C(2) = U, + Uyexp(-42) - (2.28)
where Ui, U,, and A’ are constants. The specific solution for this condition is given by [cf. A7 and

A8 of van Genuchten and Alves, 1982]:
C'ZT) = Uy ZT;0)+ Uy §5ZT;A) (2.29)

where ¥,* and ¢,” are listed in Table 2.2.
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2.2.3. Production Value Problem (PVP)

General Solution
The solution for a depth-dependent production, ¥{(Z), is [Linds‘trom and Boersma, 1989]:

@ - f f rE(m T, 0y dn dr 230)

where I';% is listed in Table 2.2. This solution is quite similar as (2.23) for the IVP. Specific solutions

of the PVP for stepwise and exponential profiles can be obtained by integrating with respect to time.

Specific Solution
1. Stepwise Production Profile. Solute production having a distribution of » distinct steps is given

as

YE@) =y, Z<Z<Z,

itl

(=12,.,n;Z=0and Z - «) (2.31)
where ¥, is a constant. Inserting (2.31) into (2.30) and integrating with respect to 7 yields

T

CPzT = R E(y y_I)I//l(Zz'Z)dz' (i=1,2,..,n;7,=0) (2.32)

0

where the expression for ;% is givenin Table 2.2. For uniform solute production throughout the soil

profile (n = 1), (2.32) reduces to

cfzn = v(Z1; Z, O)dt (2.33)

’:u|“<
O C—— Ny

This expression can be readily integrated by parts. If u* # 0, the concentration as a result of uniform

solute production becomes [cf. AS and A6 of van Genuchten and Alves, 1982]:
Y
cr@1) - -”—,j:[l -4 @ 1.0 -G @ T (234)

where ¥,* and G;%(Z,T) are given in Tables 2.2 and 2.3, respectively. For £ = 0, the solution is [cf
BS5 and B6 of van Genuchten and Alves, 1982]: |
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CPz.T)=y,Gi(ZT)IR (2.35)

where G,*(Z,T) is given in Table 2.3.

2. Exponential Production Profile. Solute production can be expressed as an exponential function

in a manner similar as for the IVP:

YD) = ni+nexp(-4'2) (2.36)
where ¥,, ¥,, and A” are constants. The solution is now given by

T
cren =L nutesoy ey eiras
0

.

_Zé.[l - YEET;0) - GEZ )| (4" >0)
am
Xt [ ¥, Z, ;A )dr (2.37)
r
26f@n %f WEZ, o e (4= 0)

where ¥,* and y,F are given in Table 2.2, while G,%(Z,T,42) and G,%(Z,T) are defined in Table 2.3.
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Table 2.3. Expressions for G5(Z,T) in the Solutions for the Resident

and Flux-Averaged Concentrations

GE C’ Cf Cr
First-Type Third-Type
General T
T xp( .01) { P PRZ- 7)? ]
exp| - — —~—exp | —— "L
R inT 4Rt 0
1]
- L oexpez) erte | BET | | ar
2R VAR TP
for Q=0
1 orfe| RET ) + Lexppzyeri] RZT ] 1. RZ-T _PRZ-T)
G@ZT;0) | 2 VaRT/P | 2 V4RT/P 2\ yarTip nR 4RT
- 1(1+PZ+5-) exp(P2) exfc| RET
2 R JARTIP
for Q#0 exp[P(l u)Z] ( RZ- uT) _
(Q>-P/4) 2 2 /4RT/ 11 exp[P(l“u)Z]erfc RZ-uT
1+u 2 VART/P
G(Z,T Q) P(1+u)Z RZ+ul
JARTTP , 1 e)CP[P(hu)Z]m.c RZ+uT
1-u 2 JARTIP
gy 2
2 eXp|1,z+1>(1 T | o[ _RZAT
1-u2 4R JART/P
with u = l 14342
P
G, (Z,T)
7+B2T | RZT T+—1-(RZ—T+B-) erfc| R2L
2 VART/P 2 P VARTIP
- RZAT o oP7y erte| REHT PT (g 2R) oo PRZ-TY:
ARTIP 47R P 4RT
2
., |T_ R PRZ+T) exp(P2) exfec RZ+T
2 2P 4R [ARTIP

1 The integrals in G\*(Z,T;4J) are evaluated numerically for £2 > -P/4,
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3. DETERMINISTIC NONEQUILIBRIUM CDE

3.1. Transport Model

Solute transport in the subsurface is affected by a variety of chemical and physical nonequilibrium
processes [Nielsen et al., 1986; Aharoni and Sparks, 1991). Chemical nonequilibrium may occur as
aresult of kinetic adsorption while physical nonequilibrium is caused by a heterogeneous flow regime.
Chemical nonequilibrium models consider adsorption on some (or none) of the adsorption sites to be
instantaneous, while adsorption on the remaining sites is governed by first-order kinetics [Selim et
al., 1976; Cameron and Klute, 1977]. In contrast, physical nohequilibrium is often modeled by using
a two-region (dual-porosity) type formulation. The medium contains two distinct mobile (flowing)
and immobile (stagnant) liquid regions [Coats and Smith, 1964; van Genuchten and Wierenga, 1976];
mass transfer between the two regions is modeled as a first-order process.

Although the chemical and physical nonequilibrium CDE are based on different concépts, they
canbe put into the same dimensionless form for conditions oflinear adsorption and steady-state water
flow [Nkedi-Kizza et al., 1984; van Genuchten and Wagenet, 1989]. We will first present the
formulations of the two-site and two-region models, followed by both general and specific solutions
of the nonequilibrium CDE (cf. Chapter 2).

3.1.1. Two-Site Nonequilibrium Transport
The two-site nonequilibrium model makes a distinction between type-1 (equilibrium) and type-2
(first-order kinetic) adsorption sites [van Genuchten and Wagenet, 1989]. For steady-state flow in

a homogeneous soil, transport of a linearly adsorbed solute is given by

K 2
(1+fp,, ")éf - pdc _,0¢_ %[(Vf)ch‘Sk]

[V ot Ox? ox 3.1)
oK, C Joy v, (%) '
—-yac-.____a_’_+ya(x)+______’__
os, _
FTi al(1-)Ke-5)] = myse + 117, (32)

where «is a first-order kinetic rate coefficient (T™"), fis the fraction of exchange sites that are always
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at equilibrium, and the subscripts e and k refer to equilibrium and kinetic adsorption sites,
respectively. Equations (3.1) and (3.2) use the customary first-order rate expression for describing
kinetic adsorption on type-2 sites. The two-site adsorption model reduces to the one-site fully kinetic
adsorption model if /= 0 (only type-2 sites are present). The one-site model is used in Section 4.2

in the stream-tube formulation for field transport.

3.1.2. Two-Region Nonequilibrium Transport

The two-region transport model assumes that the liquid phase can be partitioned into mobile
(flowing) and immobile (stagnant) regions. Solute exchange between the two liquid regions is
modeled as a first-order process. “The two-region solute transport model is given by [see also van

Genuchten and Wagenet, 1989]:
dc

d
— - a(cm—cim

2¢
ox* ox (G.3)
- (emﬂﬂ,m+fpbKdﬂ s,m)cm + Hm yﬂ,m(x) +fpb J,s,m(x)

dc
(0, +fpbKd)a—tm =0,D, Ju

dc,
[ 0im+(1 _f)pbK‘d]__é]Er2 = a(cm_ cim) B [ 0imluﬁ,im + (1 ‘f)pbKd'us,im] cim
(.4)

* azm yll, im(x) + (l —f )pb ys, im(x)

where the subscripts m and im refer to the mobile and immobile liquid regions, respectively, J, =v6
=v,,0,, is the volumetric water flux density (LT™"), f represents the fraction of adsorption sites that
equilibrates with the mobile liquid phase, and « is again a first-order mass transfer coefficient (T ™)
governing the rate of solute exchange between the mobile and immobile liquid regions. Note that &

is equal to 6,+0,,.
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3.1.3. Dimensionless Transport Equations _
If we employ the dimensionless parameters listed in Table 3.1, the two-site and two-region
models reduce to the same dimensionless form [see also Nkedi-Kizza et al., 1984]:

oC o*C oC
e w(C-C) - nC + 7,2 (3.5)

R =
A or P g72 oz

ac,
¢ -'B)RET— =w(C - C) - pul, + 1D (3.6)

where the subscripts 1 and 2 refer to equilibrium and nonequilibrium sites, fespectively; Pis a
partitioning coefficient, and w is a dimensionless mass transfer coefficient. Table 3.1 defines the
various dimensionless parameters for the one-site (f= 0) and two-site adsorption models, as well as

for the two-region model. We further assume that w and u cannot be negative. Note that P is

defined as D = §,D, /0 for the two-region model (Table 3.1). In CXTFIT 2.1, v (= 6,v,/6) and D

are used as input parameters instead of v,, and D, Also note that £ for the two-region model

represents the fraction of mobile water, @, (= 8,/06) if the solute is nonreactive.

3.2. Analytical Solutions

Similar mathematical conditions as for the equilibrium model can be formulated also for the
nonequilibrium problem [ Toride et al, 1993a]. If the same initial condition is used for the equilibrium
and nonequilibrium phase, we can write the general initial condition for the dimensionless

nonequilibrium transport model as

C(Z, 0) = CyZ 0) = C,(D (3.7
The condition at the inlet is again given by either a first- or a third-type condition, i.e.,
C,(0,7) = C,(T) (3.8a)
or
19C,(0,7)
c0,7) - —=C 3.8b
0,1) - 22— = C,(D) (3.80)

while the invoked outlet condition is

aC, |
— &N =0 (.9
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Table 3.1. Dimensionless Parameters for the Nonequilibrium CDE}

Model
Parameter One-Site} Two-Site Two-Region*
r vt vt vt
L L L
X X X
z L L L
, vL vL Yl L
D D D, D
R 1+ pb;(d 1+ pbgd 1+ pbfd
B 1 0+fp,K, 0,+fp,K,
R 0+p,K, O+p,K,
° a(R-1)L a(1-F)RL aL
v \Y 6v
c c C
“ < ) <
C Sk Sk Cim
g K,c, (1-f)K,c, c,
u Lluﬂ L(H,UQ +fpb Kd'u s,e) L(H»ﬂﬂ,m+fpbKdﬂ s,m)
! v v Bv
u, LR-Dp, LA-f)pKp,, L(O,p 0+ A-N)P K )
2 v (2% v
}’ - Lya L(6y0+fpb ys,e) L(amyﬂ,m+fpbys,m)
1 ve, Ovc, Ovc,
Y Lp,y,, LA-Hp, 7, L0,V m* APy ¥y im)
2 Ove, Ovc, Ovc,

T ¢, and L represent a characteristic concentration and length, respectively.

1 The one-site model is obtained by setting /= 0 in the two-site model.
*D=6,D,/6
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Because of the linearity of the problem in terms of C, the solution can again be obtained as the
sum of independent solutions for a boundary value problem (BVP), an initial value problem (IVP),

and a production value problem (PVP), hence:
CEZD = C'ZT) + Cl@D + ¢{(ZD (3.10)

CZD =CEZT) + CJZT) + C (2T (3.11)

Analytical solutions of (3.5) and (3.6) subject to (3.7) through (3.9) can be derived using Laplace
transforms [Lindstrom and Narasimhan, 1973; Lindstrom and Stone, 1974; Lindstrom, 1976].
Details of the solution process are outlined by Toride et al. [1993a], and will not be reported here.

We will follow the same approach as in Chapter 2 by first presenting the general solution and
subsequently giving several specific solutions. Expressions for the resident concentration, obtained
for both a first- and a third-type inlet condition, and the flux-averaged concentration are provided.
Solutions for the nonequilibrium CDE can be readily reduced to those for the equilibrium CDE by
first assuming w = 0 and subsequently setting = 1 [Toride et al., 1993a]. The nonequilibrium
solutions are given in terms of auxiliary expressions listed in Tables 3.2 and 3.3; these functions are
similar to those in Tables 2.2 and 2.3 except for the nonequilibrium parameter 5.

Effluent concentrations obtained from column displacement experiments are usually viewed to
represent flux-averaged equilibrium concentrations, C, . Resident concentrations, on the other hand,
are typically obtained from core samples. Current measurement techniques are inadequate for
distinguishing the equilibrium and nonequilibrium phases of the resident concentration (this is
particularly true for the two-region model where a further partitioning of the liquid phase is needed).
Usually the total resident concentration, C,, is measured:

C; = BRC,, + (1-P)RC,, (3.12)
i.e., the total amount of solute in phases 1 and 2 per unit volume of soil solution at a given point in

time and space [Parker and Valocchi, 1986].
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3.2.1. Boundary Value Problem (BVP)

General solution

Concentrations as a result of an arbitrary input function, C(7), can be expressed as

clzr) = f C(T- 1) f(Z,Ddr (3.13)
0
T
B (w+u,)T-9)
CLZT) = 7 ,B)R f iz vyexp [ AR d (3.14)

where
T

wT ) T vN
fZ1)= l" VA T)exp( ,BR) —f\J W I'(Z,7) H(t,T) dr (3.15)
0

with I'(Z, ) given in Table 3.2 and where the superscript refers to the nonequilibrium solution.
Furthermore, H\(7;7) is given in Table 3.4 with I, as the modified Bessel function of order one.
Below we give specific solutions for cases where C,(7) in (3.8) is described by a Dirac delta, a

multiple pulse, and an exponential function.

Specific Solution ,
1. Dirac Delta Input Function. The inlet condition for a Dirac delta function is (cf. (2.16a)):
CAD) = My (D) (3.16)
Substitution of (3.16) into the general solutions leads to the following specific solutions:
CY(ZT) = Myf(ZT) (3.17)
T
—_ M i .
2( 1) = - ﬂ)RfP (Z,t) H(t;T) dr (3.18)

where the nonequilibrium travel time pdf, AZ,7), is given by (3.15), I';"(Z, ) can be found in Table
3.2, and Hy(7;T) is given in Table 3.4 with I, as the modified Bessel function of order zero.
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2. Multiple Pulse Input Conditions. The input concentration for a series of successive applications
of rectangular solute pulses, as illustrated in Figure 2.1, is

C(D)=f, IT<I<T,,, (=1,2,.,n; T,=0and T ~=) (3.19)
where f; denotes again an arbitrary constant. The superposition principle allows the solution to be
written as the sum of the equilibrium (k= 1) and nonequilibrium (k = 2) concentrations resulting from

a single pulse input as published by, for example, Lindstrom and Stone [1974]:

ctzn- E f-)ALZ,T- T) (i=1,2,..,m, k=1,2;£,=0) (3.20)
with

T
A(ZT) = f ¥z, 1) exp[ —_“i_ J(a,b)dr (3.21)
0 (0 +p,) PR .

T

. @ N WU, T

AZT) = o [ r’ (Z,r)exp{ e p| L1 G (3.22)

where Goldstein's J-function, J(a,b), and a and b are given in Table 3 .4.
The following alternative expression can be obtained for 4,(Z, T) by partial integration of (3.21)
[see De Smedt and Wierenga, 1979, Toride et al., 1993a]:

wu, wT
A@ZD =G| ZT; p,+ exp|-——o "
1 ‘( e, (@ +,)BR
3) N o,
+— 1 G| Z, Ty pu,+ exp[-a-b .
Rf 1( 73 w%] pl 1 | (3.23)

0

Ty oL 2 Jﬂ(l 5 Ll 24ab ]

T
_ wu,
G YASYT exp[-a - b}
(1- ﬂ)Rf ‘[ ‘ wwl) |

1[2yab] + wf’# l(l‘ﬁﬂ)(f "9 1[2/ab] |dz
2

dr

4,(ZT) =
(3.24)
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where G,"(Z,T;£J) is given in Table 3.3. CXTFIT always assumes that st wu/(wtu,) > 0, which
is consistent with earlier assumptions that x4, and u, > 0. Differentiating the solutions for a single step
input (i.e., 4,(Z,T) and 4,(Z,T)) with respect to Tyields the travel time pdf (cf. (3.17) and (3.18)) [De
Smedt and Wierenga, 1979].

3. Exponential Input Function. The exponential input function is given by

C(T) = f; + fLexp (- A2 T) (3.25)
where f,, f,, and A” are constants. As described by Leij et al. [1993], an approximate solution for this
exponential input can be derived by using the series expansion of the zero-order modified Bessel
function [9.6.12 of Abramowitz and Stegun, 1970]:

ClZ 1) =f,A(Z,T) +f,exp(- 2°T) GIN[Z,T; PR _%13.29- - ﬂRAB)
-q

T (3.26)
- fexp(-q7) f I‘f' (VA r)eXp[ -—ﬂ—%(w—ﬂRq)]Q(f) drt
B, ,_@h [exp(-gT) . +ﬁqu_
G (Z1) =£,4,Z.T) a- ﬁ)Rl o AR o BRq
——eijl( /ZqDG (ZT ,ul+w+'BRp;1 ﬁR/lB) 327)
- fzexp(-qf)‘(( I‘fv(Z,r)exp[ ——’b%(w—ﬁrq)} ®,(r)dr
with [
_ v« (g7 C -yt 3.28
%0 = Z n! [;(,13 ) (n-k)! ] 29
_ v (pqo) -1 | @ 3.29
(%) Z n! [% [ ,13-q) (n-k+1)(n-k)! ] (3:29)
and

22




S B ALt ‘
@ a0k’ AR (3.30a,b)
JBR 1-8)

The auxiliary functions 4,(Z,7) and 4,(Z,T) are given by (3.21) and (3.22), respectively. In analogy

to the equilibrium solution of the BVP for an exponential input (cf. (2.22)), the parameter # in

a
p:.—.:
T

G,"(Z,T) can be complex for large A%, A convergent solution is usually obtained for a maximum 7

value of 25. The solution is less appropriate for relatively large values of the product pg and/or T
3.2.2. Imitial Value Problem (IVP)

General Solution

The general solution of the IVP is

L

Cl @1 - exp( ;—g) f C(mT3(Z, 7, Ddn
0

T - |
+ :B% ( H(z,T) + l(lT;;(TT—;HI(r;T)] fCi(q)]_";"(Z,n,z-) dndr
0

0

(3.31)

(w+p)T
(1-P)R

T y (3.32)
0 0

~where I,¥(Z, 1, 7) is listed in Table 3.2, and H (7, T) and H ,(z,T) are given in Table 3.4. Specific

solutions will again be presented for a Dirac delta, stepwise and an exponentiél initial distribution.

C,ZD=C (Z)exp[-

These solutions are obtained by substituting the initial profile C(Z) into (3.31) and (3.32), followed
by integration with respect to 7 (cf. Section 2.2.2).

Specific Solution

1. Dirac Delta Initial Distribution. If solutes are initially located at Z= Z,, the initial concentration

C{Z2) is written as
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C(2) = M,6(Z-Z) (3.33)

-where &(Z) is a Dirac delta function, and M, is the dimensionless amount of solutes initially placed

at Z=Z,. The corresponding dimensional initial condition is given by (2.24b). After substituting
(3.33) into (3.31) and (3.32), the dimensionless concentrations of phases 1 and 2 become

cl@n - exp( T) r¥zz,.7)

+ —‘f [ (1- ﬁ)ﬂ(;' 7) Hl(r;T)] I‘,f’(z,zl, 7)dt

(3.34)

» (w+p))T
cl @z =C -
> (Z.T) ,(Z)CXP[ PR

[ l (3.39)
+ 7 :;)R f [ H(z,T) + wﬁglf_)_]{l(z—;]')) I‘;V(Z,Zl,r) dr
0 -

In contrast with the equilibrium CDE, the above solution for a Dirac initial condition at Z, = 0 differs

from the solution for the Dirac input (i.e., (3.17) and (3.18)).

2. Stepwise Initial Distribution. The stepwise initial distribution is given by
Co-=U, Z<Z<Z,, (i=12,.,n; Z =0 and Z  ~«) (3.36)
where U, denotes an arbitrary constant (cf. Figure 2.2). The solution of the IVP for this case is

clz,1 - exp( “’T]Ew U0 @T;2)

i (3.37)
+—f 0(rT)+ NT BT H(7,T) Z(U U_)¥(Zr,2)dr
: T
Timm - (orp)T] o . | A-p(T-1)
CZ(Z’D'C"(Z)%[ (1—/:’)R] 1-pR f (H"(”D\l pe a1 51) 659
| A .
E U-U_ D¢ 2Z;2) dr (i=1,2,..,n, U, = 0)
i=1
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where y," is listed in Table 3.2.

25




3. Exponential Initial Distribution. The exponential initial condition is given by
C(2) = U, + Uyexp(-4'2) (3.39)

where U,, U,, and A’ are constants. The specific solutions for this condition are

ClZD = eXp( -.‘."I) [U Wz T,0)+ U, 4, 2T )]

,Bz' N . (3.40)
+_ a ,B)(T— o) [Ul ¥ (Z,7,0) + Uy, (Z,r;/l’)]dr
'y
1 _ (w+rp)T L@ .
0 (3.41)

[T
pr 07

where ¥," and ;" are listed in Table 3.2, and Hy(z,T) and H,(z,T) are given in Table 3.4.

(0,0 @50y + U, )" 2,552 |ae

3.2.3. Production Value Problem (PVP)
General Solution

As outlined in the Appendix of Toride et al. [1993a], the general solution for the equilibrium

concentration in case of production profiles ¥,(Z) and y,(Z) can be written as

a,b) f( n(n)+

72(77) I,'(Z,n,7)dndr

7R (w+u2)ﬂR y’(")]

(3.42)

- T, (Zn,z‘)dndz'— ——-—f O(rT)f

Two cases need to be distinguished for the solution of phase 2, viz. wtp,>0and w=pu,=0. For
the special case that w = x4, = 0, we have the simple solution

Vz(Z) T
(1-PR

C @D =

‘ . T
C, (Z I = exp
(3.43)
|
|
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whereas for wtu, > 0 the nonequilibrium (phase 2) concentration is given by

7,2) {1-exp[- (@+u,) T

CZP(Z:]) = Wi (1 —ﬁ)R

2

}+————-——w [exp ———-————-—wﬂzr
BR(w+p,) ) (w+p,)BR

- [1-J(,a)] f( 71(77)+w

BI-9)
Rf (1-p)r

where I, whlch is the same as for the IVP, is listed in Table 3.2 and H(7;T), H,(7;T), and J(a,b)

fj; yz(n)J I,'(Z,n,7)dndr | (349
2

T)dn dr

is again given in Table 3.4. Specific solutions for stepwise and exponential distributions for the
production profiles, ¥,(Z) and y ,(Z), are given below for w+u, > 0. In case w+u , = 0, the

concentration for phase 1 can be readily obtained from (3.42) (cf. (2.30)), whereas a specific solution

for phase 2 can be obtained by substituting the production profile into (3.44).

Specific Solution ,

1. Stepwise Production Profile. The production distribution for » distinct steps is given as
Nn@=r,; Zl,,.sZ<ZL,.+1 (=12,.,n; Z, ;=0 and Z, |~ ) (3.45)
Y,(2) = Ya, Z,;82<Z, ., (=12,..m;Z, =0 and Z,, ~=) (3.46)

where y,,, ¥, Z,,, and Z, are constants. For a single step (n =1, m= 1), the production is uniform
throughout the soil profile. Inserting (3.45) and (3.46) into the general solution and subsequent

integration with respect to 7 yields

T

cle f Sl S
F@D= g | 0| - o i

wasl e
FRGw ) { [ (@+p)BR

Zl: (7, - ) (Z, 0,2,,) dv
J=

J(ab)z(}'l, V)W 2552, ) dr

i=1

(3.47)

J(a,b)-Hy(z, T)}
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P _ }'2(2) _ _ (w+ﬂ2)T
C,(Z0 = o, {1 exp[ AR
T

+___a)_.._.f exp w'u
PR(w+p ) (w+u)R
0
@ ©H2 B(T-1)
- 1-J( H (z;T
w%exp( o MR][ J(b,a)] - «l( 5 A )

'21:(}'2,, - rz,,-l)vle(Z,f;Zz,j) dr (=12, ¥7,,= ¥,,=0)
e

|

[1-J(, a)]Z(Vl, Y1,- 1)‘/’1 Z,5,2,)

(3.48)

where ;" is listed in Table 3.2.

2. Exponential Production Profile. The depth-dependent production terms are given by:

Vd2) = Vi * Vipexp (- 4,2 (k=1,2) (3.49)
where ¥,,, ¥.,, and 4, are constants. The concentrations are now given by
| @pT

T
C,ZDn-=
@D~ ﬂRf " @R

Iy, (ZTO)+712 ’/’2(2 3 ’lf)]df

J(a,b)

(3.50)

_opT
J(a,b)-H (7, T
ﬂR(wwz)f { [ @R | @O HlE )}

[y, 01 @500+ 7,, 95 (Z0:4)]dT
7A2) {1_exp[_<w+u2)r

T N
} + @ exp| - _ DT
wtu, (1 —'ﬁ)R pR(a)+# 2) (w tH 2)ﬂR

‘[ -JG@ Y W(EZ 50+ v, U2 T A)]

© WH , p(T-7)
: 1- H(zT
w%exp[ 7= 2)pR][ J(b,a))- Al( 15, (B D)

17, 0(Z50) + 7, U,(Z,1;4.)] pdT

G (ZD)=

(3.51)

+
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Table 3.3. Expressions for G¥(Z,T) in the Solutions for the Resident

and F lux-Averaged Concentrations

\

G¥ C, or Cy C,
First-T Third-
Generalt T
.()z' pRP | PURZ-7}|, oxo| -7 P_ |- PURZ- 7)?
Gz, ™t 4fRt PR nfRt 4BRt
0
RZ+7T
~—exp( PZ) erfc /2 dr
2/R JaPRIP
for Q=0 lerfcM +lexp(PZ)erfc[M 1 ﬁRZ -T )lp{ P(MZ—T)Z
Grezr.o| * |VABRTP| 2 JVAPRTIP 2 \J afRT
1 ( 1492+ 2T ] exp(PZ) erfc| LRET
2 PR | (ABRTIP
for 020 Yoo PA-WZ | o | BRZ-uT 1 op PA-0Z] o | BRZ-uT
° 27 2 VABRTTP Lo 2 ViBRTTP
(2> -Pl4)
L1 xp{P(hu)Z]e i BRZ+uT 1 XI{P(IW)Z} BRZ+uT
Gz 1,9 2 2 VAPBRTIP 1-u 2 JABRTTP
2
— 2 ep|pz e PN g BRZ+T
1-u? 4R 4PRTIP
with u = 1+i'(—2

t The integral in the general expression of G," (Z,T£)) is evaluated numerically for £2>-P/4.
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Table 3.4. Expressions for H(7,7) and Goldstein's J-function, J(a.,b)

Function Expression
H(r; [ 1 |he *
o5 T) oxp |- 25 (W+p,)(T-7) L |22 | @7
BR  (A-PR | °| RN )
H(t.,T [ . .
I(T’ ) exp _wT_ ((‘)'*ﬂz)(T-T) I E T-0)r
AR 1-p)R "I RN BA-B)
J@a,b) 1 - exp(-b) [ “exp(- A, [2/4] dA
with g = — @27 png . @7 #T" D)
(w+pu,)BR (1-p)R

3.3. Degradation for the Nonequilibrium CDE

Thus far, no assumptions were made regarding the values of the degradation coefficients (i.e., Ky er
Boks Byms Byim> Bsm> Bs,im)- FOT many actual transport problems it may not be possible to determine
meaningful individual degradation parameters. The number of degradation pathways and associated
coefficients can be reduced in several ways.

As outlined by van Genuchten and Wagenet [1989], one simplification is to assume that all rate
coefficients are the same (e.g., for nuclear decay), i.e., u,= u,, = u,, = p for the two-site model, or
Pim™= Piim ™ Bsm = Hym = p fOr the two-region model. The dimensionless parameters, x4, and u,, for
the two-site and the two-region models (cf. Table 3.1) reduce then to

m=BRY, p,=(1-PRy (3.52a.b)
where the dimensionless parameter, ¥, is defined as '
| w=ulLlv (3.53)

An alternative simplification assumes negligible decay in the adsorbed phase. The assumption of
exclusive decay in the liquid phase appears realistic for at least some pesticide-soil combinations
[Weber and Cole, 1968; Moyer et al., 1972, Ogram et al., 1985]. The dimensionless degradation
coefficients for the two-site model are now given by

b=y, u,=0 - ’ (3.54a,b)
where ¥,= u[L/v. It may also be possible that degradation occurs only in the adsorbed phase rather

than the solution phase; an appropriate ¥, is then defined from the corresponding ..
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Table 3.5 summarizes the expressions for 4, and y, in terms of y for the most general case as well
as for several limiting scenarios. We have furthermore assumed that the degradation coefficients for
decay in the liquid or adsorbed phase are the same for both regions in the two-region model when

degradation takes place exclusively in the liquid or adsorbed phase.

Table 3.5. Expressions for the Dimensionless Parameters y, and u, in (3.5) and (3.6)

One-site model Two-site model Two-region modelt
Independent degradations w“w=y, =Y (BR-Dy,, by = i+ (BR-B)Y,,,
rates in liquid and Hy=R-1y, 4, =(1-BR Vi by =P, Vim t[1-BR-,,] Veim
adsorbed phases
Identical degradation in ey u,=PRy u=PBRy
liquid and adsorbed phases  p, = R-1)y Uy =(A-PRy 4=0-PRy
No degradation in the =Y, w =, =9, ¥,
adsorbed phase 4y =0 #y=0 by = B ¥,
No degradation in the u, = u,=(PR-Dy, u =(BR-3)Y,
liquid phase Hy=R-1y, Hy=(1-PRY, #y = [A-PDR-8,1¥,

t ¢n= 6.6, $=6,/0
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4. STREAM TUBE MODEL FOR FIELD-SCALE TRANSPORT

4.1. Introduction

Traditional deterministic approaches based upon the convection-dispersion equation (CDE) for
chemical transport and the Richards equation for water flow work relatively well for homogeneous
soils and packed laboratory soil columns. However, most field soils are far from homogeneous,
resulting in sometimes highly nonuniform flow and transport processes. Experimental investigations
at the field scale have demonstrated the effects of heterogeneity on solute transport [e.g., Biggar and
Nielsen, 1976; Sudicky, 1986]. A variety of stochastic modeling approaches have been employed to
describe nonreactive solute transport in a heterogeneous flow field [e.g., Dagan, 1984; Sposito and
Barry, 1987)]. Récently, stochastic methods have also been used to study solute transport subject to
equilibrium [Kabala and Sposito, 1991] or nonequilibrium adsorption [e.g., Dagan and Cvetkovic,
1993; Bellin et al., 1993]. In these investigations, a transport equation in tefms of a mean solute
concentration across the field is formulated using the covariance functions of local-scale transport
parameters. Unfortunately, it is usually not possible to determine a reliable statistical distribution for
each parameter.

In a simplified approach to stochastic modeling, the field may .be viewed as a series of independent
vertical soil columns (cf. Figure 4.1). These columns are generally referred to as "stream tubes"
[Dagan, 1993; Jury and Roth, 1990]. Local-scale transport in each stream tube is described
deterministically assuming a convective or convective-dispersive model. Transport at the field scale
may be modeled by viewing selected parameters in the convective or convective-dispersive model for
each tube as realizations of a stochastic process. The mean solute concentration for an entire field
is given by the ensemble average of the local concentrations in all stream tubes. At the field scale,
the one-dimensional CDE (perfect mixing perpendicular to the flow direction) and the stream tube
model (no mixing between tubes) constitute the limiting cases for solute transport [Jury and Fliihler,
1992].

There are several ways in which the stream tube model has been used to quantify solute transport
in heterogeneous soils. Dagan and Bresler [1979] and Bresler and Dagan [1979] described the

downward movement of nonreactive solutes at the field scale assuming a lognormal distribution for
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the saturated hydraulic conductivity. Jury [1982] used a so called convective lognormal transfer
function model (CLT), which neglects local-scale dispersion. Van der Zee andvan Riemsdijk [1986,
1987] applied the stream tube model to reactive solutes, while Destouni and Cvetkovic [1991]
introduced physical and chemical nonequilibrium in the local-scale transport model.

CXTFIT 2.1 allows the use of the stream tube model for a variety of transport scenarios. The
analytical solutions of the equilibrium and nonequilibrium CDE as described in Chapters 2 and 3, will
be used to model local-scale transport. Stochastic variables are the pore water velocity, v, in
combination with either the dispersion coefficient, D, the distribution coefficient for linear adsorption,
K or the first-order rate coefficient for nonequilibrium adsorption, @. These three different pairs of
random parameters are describgd with a bivariate lognormal joint probability density function (pdf).
Further details can be found in Toride and Leij [1996a). The implications of describing the transport
problem as an initial or as a boundary problem for the stream tube model were discussed by Jury and
Scotter [1994] and Toride and Leij [1996b].

Fig. 4.1. Schematic illustration of the stream tube model.
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4.2. Local-Scale Transport

We will describe solute transport at the local scale with the one-dimensional one-site chemical

nonequilibrium CDE by setting f'to zero in (3.1) and (3.2):

dc d%,  dc, ap,

L= D—L -y L K.c-s|-uc +v(x - 4.1
at ax2 ax 0 [ d’r ] ﬂQ r yﬂ() ( )
d
‘55 = a[Kyc,-s] - ps + 7, @.2)

- The subscript k is now dropped because there are no equilibrium adsorption sites. Furthermore,
 transport equations are given in dimensional form in this chapter. For equilibrium adsorption (a-~),

the nonequilibrium CDE reduces to (cf. (2.3)):
R dc, Dazc, dc, ® 43
= -v—L-puc +y(x )
ot Ax?2 dx re, vy ( )

where the retardation factor R was defined as

PK,
7

R=1+ (4.4)

and where ¢ and y are given by (2.5) and (2.6), respectively. We will assume equal degradation rates
in the liquid and adsorbed phases, i.e., # = u R.
The equilibrium and nonequilibrium CDEs were solved subject to the following general initial and

boundary conditions (cf. Chapters 2 and 3):

cr(x, 0) = ci(x)’ § (xa 0) = Kd ci(x) (45a,b)

ve, (0, t) - 6Dac'(o’ 0. ve (1) (4.6)
dx '

s t) =0 4.7

‘\‘ —67 (oo, ) - ( . )

in which 6 = 0 for a first-type and J = 1 for a third-type inlet condition. A flux-averaged
concentration, c;, can be obtained from c, according to (2.13). The dimensionless solutions of the

BVP, IVP, and PVP were previously presented in Chapters 2 and 3.
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The solution of the local-scale transport equation depends exclusively on random transport
parameters such as v, D, and K, once the independent variables # and x have been specified. For
example, Figure 4.2a shows the solution, ¢, for the equilibrium CDE as a function of v and K, at ¢
=5 d for a 2-d pulse input at x = 100 cm assuming D = 20 cm® d” and p,/60= 4 g cm? (cf. (2.20)).
The concentration is normalized using the input concentration, ¢,. As K increases, the solute moves
slower because of increased adsorption; a higher v is required for the solute to reach x = 100 ¢m at
t=5d.

4.3 Field-Scale Transport

4.3.1. Bivariate Lognormal Distribution

~ The pairs of stochastic parameters in the local-scale model for transport in each stream tube are
obtained from a bivariate lognormal joint probability density function (pdf). Because of their
relatively low coefficient of variation, CV, the same values for @and p, are used for each stream tube.
The joint pdfs of v, in conjunction with either D, K, or a, are written as f{v,D), Av,K), and Av, &),
respectively‘. The general bivariate lognormal joint pdfis defined as [Spiegel, 1992; p.118]:

Y2-2p V.Y +Y¥2
F0, 1) = 1 exp| - 1 v 0 n 8)
2 2
2no,0vnyl-p,, 2(1-p;,)
with
In(v) - In -
v - n(v) - u, Y, - (n) - n, (4.58b)
Uv 0,7
P = <LT> = [ vaYnf(v, n)dvdn (4.10)
00

where 7 denotes D, K, or a (i.e., the second random parameter in addition to v), # and o are the
mean and standard deviation of the log-transformed variable, and p,, is the correlation coefficient

between ¥, and ¥,
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The ensemble averages of v and 7 are given by [ditcheson and Brown, 1963; p. 8]:
_ 1 > 1 2
<v>=exp|u, +—2-av , <n>=exply, +-2-a,, (4.11a,b)
with the coefficient of variation CV expressed as

CV(W) =yexp(cd) -1, CV(n)= exp(0,) - 1 (4.12a,b)

Figure 4.2b presents an example of a bivariate lognormal pdf for v and K, with <v>= 50 cm d*,
0,=02cmd", <K>=1cm’g", g,,=0.2 cm® g, and p,,=-0.5. The distribution for v is skewed
due to the relatively high standard deviation, g, whereas the smaller gy, results in a more symmetric
distribution for X, The value for v tends to increase as K, decreases.

The joint pdf given by (4.8) can be simplified for some special cases. When two parameters are
uncorrelated, i.e., p,, =0, the joint pdf is the product of two single pdfs:

SO, n) =50)f(n) (4.13)

where the single lognormal distribution is given by

1 [In(7) - &, 1*
exp| - ——————

2
2 no,1n 20,

f(n) =

(4.14)

A perfect correlation, i.e., p,, = 1 or -1, is the result of a complete dependency of the stochastic

variables with Y, = ¥, and Y, = -¥,, respectively. Subsequent use of (4.11) yields

Luny P :
_ v o, vn _ 1 2 4.15
n) = (5) <77>exp( 5 7,0, -2—0,7 ) (4.15)

In this case, the distributions of v and 7 are given by either A{v) or A7). Figure 4.3 demonstrates the
two cases of perfect correlation between v and K, — the same values for the mean and standard
deviation are used as in Figure 4.2b. For a perfect negative correlation K, decreases as v increases,
and vice versa.

Additional stochastic parameters can be included as long as only two of the parameters are

independent. CXTFIT 2.1 can evaluate up to four stochastic parameters in this manner.
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Fig. 4.3. Perfect positive and negative correlation for stochastic v and K.

4.3.2. Field-Scale Mean Concentration

Field-scale transport may be modeled by averaging the local-scale concentrations over all stream
tubes. In case of weak stationarity and ergodicity of the random functions describing the stochastic
parameters [cf. de Marsily, 1986; Dagan, 1989], the spatial average for the entire field is identical

to the ensemble average:

<e(rn)>= [ ctrndA= [ [eetmmisom vy (4.16)

where 4 denotes the area of the field. The local concentration can be of the resident or flux-averaged
type, in which case the corresponding ensemble averages are <c > and <c¢p, respectively. The above
assumptions of weak stationarity and ergodicity seem reasonable for our idealized pdfs.

The field-scale resident concentration, ¢,, which represents the resident concentration averaged
over the entire horizontal plane as determined by a "sufficient" number of samples at a particular

depth, is equal to the ensemble average, <c>, given by (4.16):

& (x0) = <c (x1)> 4.17)
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Figure 4.2¢ shows the product of the individual resident concentrations (Figure 4.2a) and the joint
pdf (Figure 4.2b), such a product also appears in the integrand on the right-hand side of (4.16). The
peak in Figure 4.2¢ suggests that stream tubes with v « 20 cm d* and K, ~ 1 cm® g contribute the
most to the field-scale mean concentration for the selected independent variables (x=100 cm and ¢
=35 d). Thetotal volume of the distribution in Figure 4.2¢ corresponds to the ensemble average <c,>
which is equal to ¢,. The field-scale total resident concentration, ¢r, for nonequilibrium adsorption

is obtained as the total solute amount per unit solution volume:

A PyS ~ P
Crn=\C + e ) =C + —=<s> 418
T < r 0 > r 0 ( )

For equilibrium adsorption (i.e., s=K¢,), (4.18) can be simplified to ¢r=<Rc,>. Notice that <Rc,>
# <R><c,> for a stochastic K,
A field-scale flux-averaged concentration, ¢, can be defined as the ratio of the mean solute and

water fluxes in a similar manner as (4.16):

N Y .
&, (e1) =<ve, >/ <v>= == {{ch(x,t,\’,’?)f(", 1) dvdn (4.19)

The solute flux for an entire field is given by 4 O<v>¢,. Unlike the resident concentration, the
ensemble and ﬁeld-scale average of this flux-averaged concentration will generally be different (i.e.,
¢, # <¢p) since <vep> # <v><c>. Because local values for v are not easily obtained experimentally,
estimates for ¢, will be difficult to obtain. The pdf for the pore- water velocity, Av), may be estimated
from either ¢, or <c>. Once f{v) is specified, ¢ ,can be calculated subsequently.

Variations in the local resident or flux-averaged concentration between stream tubes across the
horizontal plane (i.e., at a particular depth and time) can be characterized by its variance [Bresler and

Dagan, 1981]:

Varle@,0] = [ [lete)-<ele )T A, mdvdn =<e¥ 0> -<ete (420)
00 :

where ¢ may denote either ¢, or ¢, The variance corresponding to the field-scale flux-averaged

concentration, ¢, is expressed as
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vedx, 1)

<y>

Var

<y>

1 e .
= velx,t) - <vefx,t)> |2 f(v,n)dvdn
] 2“[ A 0] (4.21)

2
= [<v2cf(x,t)> - <VCj(x,t)>2 ]/<v>2

The variance for the adsorbed phase concentration s across the horizontal plane may be defined in

a similar manner as (4.20) and (4.21).

4.4. Solute Application for the Stream Tube Model

A correct mathematical description of how the solute is applied at the surface is necessary for
effective use of the stream tube model. We will present several possible formulations for the solute
application depending upon whether each stream tube contains the same amount of solute, or the
amount of solute in each stream tube is proportional to the local-scale pore-water velocity, v. Only
a third-type inlet condition (6=1 in (4.6)) will be considered; similar results can be obtained for a first-

type inlet condition.

Dirac-Type Application
The instantaneous application of solute to the surface of an initially solute-free soil profile, may

be described as a boundary value problem (BVP) with ¢; = 0 and ¢ (?):
Mg
c,(B) = —=46( (4.22)
v

where &(7) is the Dirac delta function [d*] and my is the amount of mass added to a unit area of the
liquid phase in a stream tube [g cm™?] (see also (2.16b)). The amount of mass added to a unit area
of soil is given by 6m, where 8is the volumetric water content. When the solute is applied uniformly
across the field during a fixed and short period of time, the amount of mass, m;,, added to each stream
tube will be equal to v<mj>/<v>, where <my;> is the mean of m, for all tubes (see input parameter
MASSST in Table 6.7).

The above scenario can also be described as an initial value problem (IVP) in which solutes are
initially distributed uniformly across the soil surface, and solute-free water (c,(f) = 0) is applied to the

soil surface. The initial distribution is now described as
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c@) = -"g 8(x) (4.23)

where &(x) is the Dirac delta function [cm™], describing the initial solute spike at x =0, and m, is the

- amount of mass present per unit cross sectional soil area [g cm?] (see also (2.24b)). The same

amount of solute, m,, is present in all stream-tubes regardless of v.

Figure 4.4 illustrates the solute distribution between tubes for the BVP according to (4.22) and
the TVP according to (4.23). Figure 4.5 demonstrates the effect of the two different solute
applications on ¢, predicted as a function of depth at 7= 1 d (the concentrations are normalized by
assuming mp/v = 1). The same amount of nonreactive chemical (R = 1, <m,> = m,/6) is recovered
in the soil profile, either applied at x = 0 for the BVP or present at ¢ = 0 for the IVP. Additional
parameters are: <v>=50 cm d”!, <D> =20 cm’ d”, and ¢, = g, = 0.5. Figure 4.5 shows that more
solute remains near the surface for the IVP, while the BVP predicts somewhat faster downward
movement since a larger fraction of solutes resides in stream tubes with a higher velocity as a result
of the velocity dependent application. Although this example pertains to a Dirac delta function,
similar differences between the boundary and initial value problems occur for other influent and initial
solute concentration profiles.

The BVP will givé identical results as the IVP if m; is the same for each tube, regardless of the
local v, as long as solute adsorption is instantaneous. The solutions for the BVP according to (4.22)
and the IVP according to (4.23) are identical for the equilibrium CDE when m,=m,/ 0 (cf. (2.17) and
(2.24)). However, this equality does not hold for nonequilibrium adsorption. The solutions of the
nonequilibrium CDE for the BVP and IVP are different because of the kinetic desorption process (cf.
(3.17) and (3.34)). We finally note that for the equilibrium CDE, the ensemble average of the flux-
averaged concentration, <c,>, for the BVP with variable m, 'according to (4.22), is identical to the

field-scale flux-averaged concentration, ¢, for the IVP according to (4.23).
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Fig. 4.4. Illustration of the solute distribution in stream tubes for variable and
constant mass solute applications based on the BVP and IVP.
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Fig. 4.5. Field-scale resident concentrations (¢,) versus depth as the result of
instantaneous solute application to the surface described as a BVP or an IVP.
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Pulse-Type Application

Following Parker and van Genuchten [1984b], we study the BVP involving a finite pulse input
for the case of either a constant or variable application time for each tube. Consider a pulse-type
solute application of concentration f, and application time ¢, (cf. Figure 2.1). Ift, is constant for all
stream tubes, the amount of solute in each tube, m;, = f,t,v, is directly proportional to the random
velocity, v. The field-averaged mean, <m,>, is given by f,7,<v>. However, the same amount of mass,
mjg , can be delivered to each tube by setting the application time inversely proportional to the
velocity, i.e., 7, = my/(f;v). This scenario, where both v and 7, are random, may occur when solid
chemicals are added uniformly across the field and leached subsequently by continuously applying
solute-free water. The input concentration, f,, is regarded as approximately constant since this
concentration may be governed by the solubility of the chemical. Figure 4.6 schematically illustrates
the solute distribution between tubes for a pulse input of constant and variable duration.

Figure 4.7 presents field-scale resident concentrations (¢,) versus depth at =3 d as a result of
a pulse-type solute application with a éonstant (#, =1 d) and variable (<t,> = 1 d) solute application
time. The same amount of solute is applied to the entire field. The transport parameters for this
example are the same as those used for Figure 4.5. Again, more solute remains near the surface for
the constant mass injection. Since the amount of solute in stream tubes with a higher v is larger for
the constant duration scenario, solute moves down faster in this case compared to the case of a
variable solute application time.

We emphasize that the previous examples involving Dirac- and pulse-type applications are
somewhat hypothetical since the stream tube model does not permit mixing between stream tubes.
Redistribution between stream tubes is likely to establish an intermediate situation where the mass
in each stream tube is not constant, but where differences between tubes are also not as large as for
the constant duration case because of horizontal mixing. Some horizontal mixing will likely also

occur at the surface.
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Fig. 4.6. Illustration of the solute distribution in stream tubes
after a pulse application of constant and variable duration.
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Fig. 4.7. Field-scale resident concentrations (¢,) versus depth as a result
of a pulse-type solute application of constant and variable duration.
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4.5. Stream Tube Models in CXTFIT 2.1

CXTFIT 2.1 allows the use of the stream tube model using several analytical solutions of the
CDE for local-scale transport, and with stochastic parameters described by the bivariate lognormal
pdf given by (4.9). Three different pdfs can be used, viz. v, D), Av,K), and Av, ). Two additional
stochastic parameters can be included provided that they are perfectly correlated with v (cf. (4.15)).

If v and D are stochastic, a positive correlation between them might be plausible as suggested by
the widely used relationship for the dispersivity, A = D/v. Substitution of 7= D into (4.15) for a
perfect positive correlation, p,, = 1, leads to

d]
s

1 1
= v v < > — 2 (4.24)
D) ( -————<v >) D exp( —2 0,0, ——2 g, ) ‘

In case g, = ), the relationship between v and D can be simplified to

D@) = <D>v /<> (4.25)

This equation implies a constant dispersivity 4 = <D>/<v> for all stream tubes (cf. Eq.(60) of Parker
and van Genuchten [1984b]).

A negative correlation between v and K, may also be plausible since coarse-textured soils
generally have a relatively high conductivity — and hence a high v— and a small K,— and therefore
a small R — whereas the opposite is true for fine-textured soils. | When p,,= -1, the expression for
K, becomes (cf. (4.15)):

Okd

T, 1 1
K@) = (2.“;’.;) % <Kd>exp( -—iavaKd——z-aKdz) (4.26)

If, in addition, we assume that g, = og;, this expression may be written as

K,(v) = <v><K,> exp(—o%,)/v 4.27)

An overview of the five stream tube models in CXTFIT 2.1 will be given later in Table 6.1. The
boundary (BVP), initial (IVP), and production (PVP) value problems in terms of the field-scale

stream tube model follow directly from the local-scale solution.
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S. NUMERICAL EVALUATION

The FORTRAN program CXTFIT 2.1 was written to evaluate the one-dimensional analytical
solutions that were discussed in Chapters 2 through 4. In this chapter we will provide background
information on numerical procedures followed to solve the direct and inverse problems. First, the
main program units of CXTFIT 2.1 are briefly reviewed. The numerical evaluation of the integrals
and various special functions in the analytical solutions are discussed subsequently. The previous
version of CXTFIT published by Parker and van Genuchten [1984b] was widely used to fit
mathematical solutions to experimental results in order to estimate transport parameters. We have
outlined the estimation procedure, which is based on the Levenberg-Marquardt algorithm.

We note that all the information needed to use the program is given in Chapter 6. Detailed
instructions for the preparation of the input file are presented in Section 6.2, while significant
variables and arrays in CXTFIT 2.1 are listed in the Appendix. This Chapter 5 should be of special
interest to readers who experience unexpected results due to errors in the evaluation of mathematical

functions, or when trying to solve inverse problems.

S.1. Description of Program Units

CXTFIT 2.1 consists of a main program, 22 subroutines, and 27 functions. These subprograms
are stored in nine source files. The executable program CXTFIT2 is obtained after compiling and

linking. Table 5.1 presents a list of the source files and associated subprograms.

CXTFIT2.FOR
The program unit Main controls the input, output, and parameter optimization procedures. The

subroutine MATINYV performs matrix inversion for the least-squares analysis. -

DATA.FOR _
Subroutine DATAIN reads data from the input file specified by the user. The data is verified with
subroutine CHECK, which gives error messages for unacceptable input. The subroutine

DATAOUT writes user-provided input data to the output file.
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Table 5.1. Source files in CXTFIT 2.1

Source file Subroutine and Function

CXTFIT2.FOR Main, MATINV

DATAFOR DATAIN, CHECK, DATAOUT

MODEL.FOR MODEL, DIRECT

DETCDE.FOR DETCDE, BOUND, INITIAL, PRODUC

STOCDE.FOR STOCDE, CONPROV, CCNPROY, LIMIT, XLNPROB, BLNPROB
FUNC1.FOR CTTRAN, CBJ, CBAL, CBEXP, CBINI, CBIN2, CIVP, CIPRO,

C2PRO, CC0, CC1, CC2, CC3, CC4, CC5, PRODO
FUNC2.FOR DBEXP, EXF, E)(PBIO, EXPBII, PHI1, PHI2, GOLD,

INTEGRAL.FOR ROMB, ROMB2, CHEBY, CHEBY2, CHEBYCON,
CHEBYLOG, CHEBYLOG2

USER.FOR CONST1, CONST2, CINPUT

MODEL.FOR
Subroutine MODEL performs coefficient assignments and routes the execution to an appropriate
subroutine for evaluation of a particular model. Subroutine DIRECT calculates the concentration

for specific times and depths (i.e., the solution of the direct problem).

DETCDE.FOR

Subroutine DETCDE models deterministic transport according to the equilibrium and nonequilibrium
CDE by adding the solutions for the BVP, IVP, and PVP. Subroutines BOUND, INITIAL, and
PRODUC are used to calculate the specific solutions for the BVP, IVP, and PVP, respectively.

STOCDE.FOR

This file calculates concentrations and variances for stochastic transport. Subroutine STOCDE
routes the execution. Function CONPROYV is used for integration with respect to v, while the
function CONPROY evaluates the integrand for other stochastic parameters. Subroutine LIMIT

modifies the integration boundaries for the field-scale mean concentrations using the Newton-
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Raphson method. Subroutines XLNPROB and BLNPROB quantify the single and bivariate

lognormal distributions, respectively.

FUNCIL.FOR

This file evaluates many of the functions used in the analytical solutions for the equilibrium and
nonequilibrium CDE. The integrands in the nonequilibrium CDE are determined by the functions:
CTTRAN for (3.17) and (3.18), CBJ for (3.21) and (3.22), CBAL for (3.23) and (3.24), CBEXP
for (3.26) and (3.27), CBIN1 for (3.13), CBIN2 for (3.14), CIVP for the IVP (i.e., (3.34), (3.35),
(3.37), (3,38), (3.40), and (3.41)), C1PRO for (3.47) and (3.50), and C2PRO for (3.48) and (3.51).
The functions listed in Tables 2.2, 2.3, 3.2, and 3.3 are evaluated as follows: CCO0 for I', £ or I',}", CC1
for G,* or G," for 2= 0, CC2 for ¢;F or ¢,¥, CC3 for ¢, or y,¥, CC4 for G/E or G if £2+0; CCS
for I';F or I, and PRODO for G,~.

FUNC2.FOR

The remaining functions in the analytical solutions are evaluated in FUNC2.FOR. The function
DBEXP calculates the exponential function (exp), a (minimum) constraint of -100 is placed on the
argument. The function EXF evaluates the product of exponential (exp) and complementary error
(erfc) functions. EXPBIO and EXPBI1 are used to determine the product of the exponential function
(exp) and the modified Bessel functions of order zero (I,) and one (1,), respectively (used in H, and
H, as shown in Table 3.4). Functions PHI1 and PHI2 are used for exponential solute input to
calculate @, in (3.28) and ®, in (3.29). Goldstein's J-function (Table 3.4) is determined with the
function GOLD, which appears in the BVP and PVP for the nonequilibrium CDE.

INTEGRAL.FOR

This file includes subroutines for numerical integration. Subroutines ROMB and ROMB2 perform
a Romberg quadrature on a log-transformed interval for the field-scale mean concentration.
Subroutines CHEBY, CHEBY2, and CHEBYCON use Gauss-Chebyshev quadrature to determine
integrals in the solutions for the nonequilibrium CDE. Similarly, routines CHEBYLOG and
CHEBYLOG?2 carry out the integration on a log-transformed interval.
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USER.FOR

USER FOR contains subroutines that allow a user to change settings for the numerical integration
or the input function. The default settings have been found to work well in most cases. Subroutine
CONST1 includes parameters for the least-squares inversion method and Gauss-Chebyshev
quadrature, while CONST?2 specifies parameters for Romberg quadrature. The user can specify an

arbitrary input function with CINPUT.

5.2. Deterministic CDE

The analytical solutions described in Chapters 2 and 3 are evaluated in DETER.FOR. Several
functions for evaluating these solutions are stored in FUNC1.FOR and FUNC2.FOR. The
expressions for the equilibrium CDE (Table 2.2 and 2.3) are evaluated by setting # =1 in the
functions for the nonequilibrium CDE (Table 3.2 and 3.3).

The function EXF(4,B) defines the product of the exponential function (exp) and the

| complementary error function (erfc) [van Genuchten and Alves, 1982):

EXF(A,B) = exp(4) erfc(B) (5.1)

where

oo

erfe(B) = = [exp( - 2)dz | (.2)

7B

Two different approximations are used for EXF(4,B). For 0 < B < 3 [see also (7.1.26) of
Abramowitz and Stegun, 1970]

L0 ,B) ~ exp(4 - B (a,7+a,” +a,C +a,7 +a,0) (5.3)
where 7= 1/(1+0.3275911B), a, = 0.254896, a, = -0.2844967, a, = 1.421414, a, = -1.453152, and
as; = 1.061405. For B>3 [(7.1.14) of Abramowitz and Stegun, 1970]:

EXF(4, B) ~ —— exp(4-B?) / (B+0.5/(B+1.0/(B+1.5/(B+2.0/(B+2.5/(B+1.0)))))) (5.4)
w

The following relation is used for negative values of B:
EXF(4,B) = 2exp(4) - EXF(4,-B) (5.5)

The above approximations do not work well if the arguments 4 and/or B are small. Therefore,

50




EXF(4,B) is set to zero for either of the following two conditions:
A|>170 A-B?>170 :
| gso or | B>IO ©-6)
Evaluation of the function G(Z, T42) listed in Tables 2.3 and 3.3 depends on the value of 2. Note
that for an exponential input involving a large 4%, Q2in solution (2.21) can be less than -P/4. In this
case the integral in the general expression for G(Z, T, £2) will be evaluated using numerical integration.
The functions Hy(z, T) and H (7, T) in the solutions listed in Table 3.4 are evaluated with

EXPBIO and EXPBI1, respectively, using (9.8.1), (9.8.2), (9.8.3), and (9.8.4) of Abramowitz and
Stegun [1970] with ¥=X/3.75: |

EXPBIO (X, Z) = e 2I(X)

x: (1.0+3.5156229 Y% +3.0899424 Y4 + 1.2067492 Y ¢
+0.2659732Y% +0.0360768 Y19 +0.0045813Y!2)  (-3.71<X<3.7 57
e /X (0.39894228 +0.01328592 Y "1 + 0.00225319 ¥ 2
-0.00157565Y " +0.00916281 Y *-0.02057706Y
+0.02635537Y ¢ -0.01647633 Y 7 +0.00392377Y ®)  (X23.75)

EXPBI1 (X,Z) = ¢ “1(X)

(xe? (0.5+0.87890594 Y2 +0.51498869 Y'* +0.15084934 Y ¢
+0.02658733 Y% +0.003015327°+0.00032411¥?)  (-3.71<X<3.75)

| | (5.8)
e @0 //X (0.39894228 - 0.03988024 Y "1 -0.00362018 ¥ 2

+0.00163801Y 3 -0.01031555Y "*+0.02282967Y
-0.02895312Y " +0.01787654Y "7 - 0.00420059Y “#) (X23.75)

Goldstein's J-function, given in Table 3.4, is evaluated with the function GOLD. Two
approximations are used depending on the values of a and b [van Genuchten, 1981b]. For relatively

small values of a and b, a series expansion of the Bessel function is integrated [De Smedt and
Wierenga, 1979]. For a>b with k= 11+2b+0.3a < 25 we used

k n k+1
b" x"™ b
p : —— — < i .
J(a,b) = exp(-a b)’g — mzo — +E, | E | & (5.9)
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where E is the error in the series expansion containing & terms, while for a<b with k = 11+2g+0.35
<25 we used
a" = 1 bm k
J(a,b) =1 - exp(-a- b)Z — Y, = +E, [El<-Z—T (5.10)
n=0 m=0 ! i .

For larger values of a and b, J(a,b) is given by [Goldstein, 1953]

J(a,b)={‘14ff+B 8;’3 (5.11)
where
4?;;/1,—4 c(vz) (5.12)
(@a-b)e* Su(2)
B—— -a-b)1 (2 +

exp( -a-b) 1,(2y/ab) oty (16ab)’"’2 (5.13)

_TD(m+112)
" T(1/2)m (5.14)

LTm+172) _
Sm+l (Z) F(I/Z)m' ZSm(z) (515)
$,(z) =1 - mz e erfc(yz) (5.16)
z=(fa-b)’ (5.17)

The integrals in the nonequilibrium solutions were evaluated with Gauss-Chebyshev quadrature
fe. g; Carnahan et al., 1969; Press et al., 1992]. Gauss-Chebyshev quadrature offers flexibility in
terms of selecting the number of integration points. We obtained accurate results with 50 integration
points for most cases (generally four to five significant digits). In some extreme cases, such as for
very small #and Z or very large 7, the results using 50 points may become inaccurate or incorrect.
A greater number of integration points generally results in more accurate results at the expense of
additional computer time. The latter effect is especially of concern when solving the inverse problem.

The number of integration points, MM, can be changed in subroutine CONST1. The parameter‘
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ICHEB in subroutine CONST1 controls the integration method. IfICHEB = 0, MM is constant at
all times. IfFICHEB = 1, the program evaluates the solutions twice, namely with MM and 2xMM in
the integration routine. The number of integration points is increased until the relative change in the
solution becomes less than 0.1%. We suggest to use a set (ICHEB = 0) value of 75 for MM when
solving the inversion problem whereas ICHEB = 1 and MM = 75 appear attractive selections for the
direct problem.

An alternative method to achieve computational efficiency and accuracy is to narrow the
integration interval. The integrand in (3.17) for a Delta input (i.e., faccording to (3.15)), or in (3.20)
for a pulse input, becomes negligible for small or large 7 due to the exponential and complementary
error functions in I';Y. The modified lower (T1) and upper (T2) integration limits were obtained by

restricting integration to the domain where the argument of exponential function exceeds -30:

- grz+ SOBRy, |, PZ 5.18
T1 = RZ {1 \ 1 30 } (5.18)

= .+ ——---—-60 T+ + —-Z 5.19
T2 = fRZ PpR{1 \! 130 } | (5.19)

The above modifications may significantly improve the computational efficiency without loss of
accuracy, especially for large T.

The general solution of the deterministic BVP for an arbitrary input C, is calculated by
numerically evaluating convolution integrals (2.15) for the equilibrium CDE or (3.13) and (3.14) for
the nonequilibrium CDE. The input function needs to be specified in function CINPUT in file
USER.FOR (see also Chapter 6). Calculation of the solution should be relatively slow since a double

integral is evaluated numerically.
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5.3. Stochastic CDE

File STOCDE.FOR assigns local-scale parameters to each stream tube and evaluates field-scale
averaged concentrations. The concentration in each stream tube is determined as described in section
5.2. Numerical integration required for the field-scale concentration and variance is carried out on
in subroutines ROMB and ROMB?2 on a log-transformed interval using up to 14th order Romberg
quadrature. Since a lognormal pdfis used, log-transformation improves the efficiency and accuracy
of the numerical integration, especially for a large standard deviation, 0. Similar to Gauss-Chebyshev
quadrature, convergence is evaluated by comparing the integration for the kth and k+1th order. The
relative error criterion is set with variable STOPER. Convergence can usually be achieved for order
k<10 with STOPER = 5107 unless the local Peclet number, vx/D, is high. As with the determinisitc
CDE, increasing the number of integration points will result in more accurate results at the expense
of more computer time. The default upper limit for % is eight, with STOPER = 5x10°° for the
evaluation of triple integrals (e.g., the stochastic nonequilibrium CDE with P.y**1) or the solution
of the inverse problem. The settings for Romberg quadrature are contained in subroutine CONST2,
which appears in file USER.FOR.

To improve the computational efficiency, the upper and lower limits of integrals in the
expressions for the field-scale concentration are restricted by excluding values for v and 7 that have
alikelihood of occurrence of less than 1x107. The integration limits are determined according to f(hé
Newton-Raphson method in subroutine LIMIT. For a large standard deviation, for example o= 2
(CV = 732 %), the integration range may become too broad for numerical evaluation with this

criterion.

5.4. Parameter Estimation

CXTFIT 2.1 estimates unknown model parameters using a nonlinear least-squares optimization
approach based on the Levenberg-Marquardt method [Marguardt, 1963]. The inverse problem is
solved by fitting an appropriate mathematical solution to observed concentration data. Most of the
calculations for the least-squares analysis are carried out in the main program (Main). The model
parameters are determined by minimizing an objective function (the sum of squared residuals, SSQ)
defined as
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N
SSQ(b) = X [elx) ~fx:b) | (5.20)

where b represents the vector of unknowns containing M adjustable parameters b, (j=1,..,M), and
¢ and f are the observed and fitted concentrations for the ith data point as obtained with the
independent variable(s) x; (i = 1,...,N). Theinversion procedure in CXTFIT 2.1 is essentially the same
asused in its precursors [van Genuchten, 1979; 1980, Parker and van Genuchten, 1984b], and hence
will be reviewed here only briefly. The optimization routine is a simplification of the nonlinear least-
squares curve-fitting program of Meeter [1966]. A detailed description of the method is given by
Press et al. [1992].

When a model depends nonlinearly on a set of A/ unknown parameters b, minimization of (5.20)
has to be carried out iteratively. At the rthiteration, the correction vector b is evaluated according
to the following linear equation:

(AT+A'T) b = Q" (5.21)
where

_ ﬁ’: df(x;;b") of(x;;b")
WO& 9p, b,

k=1..M, j=1.M (5.22)
J :
N of(x.;b”

Z f(xx V )[

c(x) -f(xf;b’)] j=1L..M (5.23)

and A" is a nonnegative scalar (a Lagrangian multiplier), I is the unit matrix of order N, and the new
trial vector is given by b™*/ = b’+éb. Notice that when A is very large, A+AI becomes diagonally
dominant, and (5.21) can be rewritten to
b, = m Q, , (5.24)
which is identical to the steepest descent method. On the other hand, when A approaches zero, (5.21)
converges to the Taylor series method (the Gauss-Newton method). Since a linear expansion of the
Taylor method will be accurate only over a small region, the Levenberg-Marquardt method aims to
gradually reduce 4 as SSQ(b) reaches its minimum.
After an initiai estimate for b is provided, "best-fit" parameters are determined as follows (most

constants for the optimization are stored in subroutine CONST]1 of file USER.FOR):
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(1) Compute SSQ(b).

(2) Set A=0.001 (= GA/GD in CONST1).

(3) Solve (5.21) for Jb and define a scale factor u = 1.

(4) Compute SSQ(b+,u6 b).

(5) If SSQ(b+ud b) < SSQ(b), decrease A by a factor 10 (GD in CONST1), update the trial
vector b =b+ud b, and go back to (3). |

(6) IfSSQ(b+udb) > SSQ(Db), evaluate the angle #*between the correction vector & b and the
steepest descent direction Q.

(7) 1If #<30°, decrease u by a factor 2, and return to (6).

(8) If #>30°, increase 4 by a factor 10, and return to (3).

The iteration stops when either of the following conditions is met:

(@) Therelative change in each estimation parameter (120, /b)) is less than the criterion STOPCR
(default value is 0.0005 in CONST1).

(b) Therelative decrease in SSQ is less than 1.0x10° (= STSQ in CONST1) for three successive
iterations.

(c) SSQ decreases more than MIT times without meeting either condition (a) or (b) (MIT is
defined in the input file).

(d) SSQ fails to decrease during 50 consecutive iterations (= MAXTRY in CONST1).

The derivatives of the fitted concertrations — based on the selected mathematical model — with
respect to parameter b, are evaluated according to |

df(x;;b) 5 S(x;;b,,..(1+A)D, .. b, ) ~f(x;;b),..5,,..))

db; Ab,

The current setting for A is 0.01 for all parameters (DERL in CONST1), which we found to be

(5.25)

appropriate for most cases. When ;is very small or insensitive to changes in the fitted concentration,
however, approximation (5.25) for the derivative may become inaccurate. The restriction |p,,| >
1x107* is placed on the correlation between stochastic parameters in order to evaluate the derivative
according to (5.25) for the parameter estimation involving stream tube models.

Theiteration procedure sometimes converges to different local minima depending upon the initial

estimate for b, as will be demonstrated in Table 7.2. It is essential to provide realistic initial estimates
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of the parameters, as close to the global minimum as possible. Furthermore, CXTFIT 2.1 allows the
use of maximum and minimum constraints on fitted parameters. When the new parameter value

exceeds a specified maximum or minimum value during the iteration process, the value for the

* constraint is used for the next trial.

In addition to user-specified constraints, the program employs an internal constraint on #for the
deterministic nonequilibrium CDE. Since the fraction of equilibrium adsorption sites, £, ranges from

0 to 1 for the two-site model (see Section 3.1), the range of possible £ values is
] ,
— < p<1
7 B (5.26)

A similar range holds for the fraction of adsorption sites in the mobile phase, £, for the two-region

model:
19, 1| 6, pK,
—_m < | 5.27
e " R( o @6 627

A maximum constraint is also placed on w; the constraint value for this parameter is defined by
OMMAX in subroutine CONST1. We note that constrained parameter optimization often results
ina slightly slower rate of convergence because of a loss in flexibility.

Finally, we recommend to generally carry out several estimation trials with and without
constraints as well as with different initial estimates for b. Also, parameter optimization ("curve
fitting") should never be used as a panacea for a mathematical model that does not reflect the

underlying transport processes.
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6. CXTFIT 2.1 USER'S GUIDE

The previous chapters provided a background ofthe solute transport models and of the numerical
procedures to evaluate their analytical solutions. This chapter serves as a self-contained user manual
for CXTFIT 2.1. First, the structure of CXTFIT 2.1 is outlined to give the user a quick overview of
the different modeling options. Second, the preparation of the input file is discussed. The input is
provided in a modular fashion, by using a series of blocks. Readers may only have to read the text
pertaining to the blocks for their specific application. Third, the strﬁcture of the input and output files
used for examples in this report will be reviewed. Fourth, we will compare the differences in input
format between the first version of CXTFIT [Parker and van Genuchten, 1984b] and the current
CXTFIT 2.1.

6.1. Structure of CXTFIT 2.1

CXTFIT 2.1 contains three different one-dimensional transport models: (i) the conventional CDE;
(ii) the chemical and physical nonequilibrium CDE; and (iii) a stochastic stream tube model based on

the local-scale CDE. Five different versions of the stochastic model can be selected depending upon

- the type of adsorption present (equilibrium or nonequilibrium), and the type of random transport

parameters. Table 6.1 lists the characteristics of all seven models in CXTFIT 2.1; the models are
idenﬁﬁed in the program by the parameter MODE. Deterministic transport can be modeled with the
equilibrium (MODE = 1) and nonequilibrium (MODE = 2) CDEs. The five versions of the stream
tube model are: equilibrium (MODE = 3) and nonequilibrium (MODE = 4) adsorption with random
v, D, and K, (p,, = 1); equilibrium (MODE = 5) and nonequilibrium (MODE = 6) adsorption with
randomv, D, and K, (p,,,=-1); and nonequilibrium adsorption with random v, D, K, and @ assuming
Pp=1and p,,=-1 (MODE = 7). A stochastic parameter can be made deterministic by setting its

standard deviation to zero.
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Table 6.1. Overview of Transport Models in CXTFIT 2.1

MODE Model Type

Parameters Concentration Mode
Deterministic CDE
1 Equilibrium v, D, R, uor u* C;,C,, C=RC,
2 Nonequilibrium v, D,R, B, w, u,, uy C;,C,, C=PRC, +(1-PRC,,

Stochastic Equilibrium CDE

3

Random v, D, and K,
with va=l

Random v, D, and K;;
Wlth Pud -1

Stochastic Nonequilibrium CDE

4

Random v, D, and K
Wlth va= 1

Random v, D, and X,
with Puxd™ -1

Randomv, D, K, and &«
with p,=1 and p.e~-1

<v><D><Kp>, u or u*
g, aDa aKda pvl(d

<v>,<D><K >, p or 4,
0,, Op, Ok, va

L <>, <D><K >, , 4y, Uy,

0> Op, Txas Poka

<V>3<D>9<Kd>’ w, /’lb ”23
0y, Op, Oy, P

<v>,<D>,<Kd>,<a’>,ﬂb
Ko 0‘2 Ip, G4, 02,., Lo

<Cp CravCpr<v>, C=<C>
C=<RC>

Same as 3

A A
<Cp.CrvCp/<y>, C=<C>
CT =<C1,+(R‘1)C2,>

Same as 4

Same as 4

Table 6.1 also presenté the mode in which the concentration is detected or predicted. Resident,
flux-averaged, and total resident concentrations can be used. Although a third-type inlet condition
is generally preferable [i)an Genuchten and Parker, 1994], resident concentrations are also given for
afirst-typeinlet condition. Flux-averaged concentrations are derived from the resident concentration
for a third-type inlet condition according to (2.13). Two-types of macroscopic flux-averaged

concentration are available for stochastic transport, i.e., the ensemble average of the local-scale flux-

. . A
averaged concentration, <C>, and the field-scale flux concentration, C, (= <vCp/<v>).

All analytical solutions given in Chapters 2 and 3 can be evaluated with CXTFIT 2.1. The
solution of the CDE is described as the sum of (i) a boundary value problem (BVP), (ii) an initial
value problem (IVP), and (iii) a production value problem (PVP). Table 6.2 summarizes the
functions that are used to characterize the BVP, IVP, and PVP.
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Table 6.2. Functions for the Boundary (BVP), Initial (IVP), and Production (PVP)
Value Problems in CXTFIT 2.1%

Function Input Concentration Initial Profile Production Profile}
C(T) =M, 6(T) C,(2) =M, 8Z-2,)
or or
Dirac Delta m m _
c ()= ) ¢,(x) = —’J(x-xl)
v 6
C,(D)=f, T,<T<T,, C2)=U, Z,s2<Z,, W2)=vy, Z,<Z<Z,,
Stepwise (i=1,2,..,n; (i=1,2,..,n; (i=1,2,..,n;
T,=0and T,,, =) Z,=0 and Z ,, =) Z,=0 and Z,,, =)

Exponential  C (D) =fi+f,exp(-#T)  C(Z)=U,+ Uyexp(-4Z) ¥(@)=7,+ v,exp(-47Z)

Arbitrary C,(T) - | .

T ﬁa []l’ Y: are 3l‘bltral’y constants.
1 The production profiles in phases 1 and 2 can be described separately for the nonequxhbnum CDE.

6.2. Input Data Instruction

The input data are read from an ASCII file. The user is prompted for the name of the input
file during execution. Default names for the input and output files can be specified in the main
Iirogram. The input file consists of up to eight of the following blocks: |

A. Model Description
Inverse Problem Parameters
Transport Parameters
Boundary Value Problem
Initial Value Problem
Production Value Problem

Observed Data for an Inverse Problem

m oMMy oW

. Position and Time for a Direct Problem
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Blocks B and G are used for the inverse problem (INVERSE = 1) while Block H is used for the direct
problem (INVERSE = 0 or -1).

All data are read in using list-directed formatting (free format) except for the case INPUTM=3
inBlock G. Dummy parameter values may have to be included in the input file to maintain the proper
format. Dummy comment lines are provided for each input block to identify the block and the input
variables — these may be left blank but should not be omitted. All input data are to be specified in
consistent units for mass [M], length [L], and time [T] (see also NREDU in Block A). The first line
of the input file gives NCASE, which specifies the number of cases that are considered. Several
different cases (i.e., data sets) can be handled by one input file. The distribution diskette contains all
input and output files for the examples in Chapters 4 and 7. Preparation of the input file for a
particular example is done most conveniently by modifying an existing input file for a similar case.

The characteristics of each input group (block) in the input file are further discussed below. Line-

by-line descriptions of every block are given in Tables 6.3 through 6.11.

Block A. Model Description (Table 6.3)

This block contains the parameters that define the type of problem to be solved. The parameter
INVERSE controls whether a direct (INVERSE = 0 or -1) or inverse (INVERSE = 1) problem is
solved. A further distinction is made for the solution of the direct problem according to the stream
tube model. CXTFIT 2.1 will only calculate field-scale mean concentrations if INVERSE = -1 while
both mean concentrations and variances, the latter according to (4.20) and (4.21), are evaluated if
INVERSE = 0. The parameter MODE specifies the model type while MODC denotes the
concentration mode (cf. Table 6.1). The input format is different for deterministic (MODE<2) and
stochastic transport (MODE>3) for some parameters. The total resident concentration is expressed
as the amount of solute per unit volume of solution.

The parameter NREDU specifies whether the specified time and positions in the input and output

files are dimensional or dimensionless. For dimensional times and positions (NREDU = 1) the

“dimensional u and y given by (2.5) and (2.6) should be specified for the equilibrium CDE (MODE

=1,3,5). Otherwise, dimensionless degradation and production terms as defined in Table 2.1 and 3.1

should be used. For a unit characteristic concentration, i.e., ¢, = 1, dimensional and dimensionless
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concentrations are obviously equal regardless of the value of NREDU; an exception is the adsorbed
concentration in case of chemical nonequilibrium. For the nonequilibrium CDE with a random K,
where <s/K c,>#<s>/(<K >c,), the adsorbed concentration is given as <s> if NREDU = 0, and as
<s/K> if NREDU>1. |
The characteristic length, L, for nondimensional parameters is specified at the end of Block A.

CXTFIT 2.1 always uses dimensionless parameters for its internal operations; all dimensional

parameters, times, and positions in the input file are internally transformed to nondimensional
variables using the (dummy) value for L in Block A. Depending on the value for NREDU, a
transformation from the dimensionless back to the dimensional variables is carried out upon
completion of all internal operations. It is recommended to use for L a value of similar magnitude

as the observation scale (e.g., column length or soil profile depth).

Table 6.3. Block A - Model Description

Line Type Variable Description

0 Integer NCASE Number of cases being considered (only for the first data set).
1 - - Comment line.

2,3 Char TITLE1,2 Descriptive title for simulation.

4 - - Comment Line.

5 Integer INVERSE Calculation control code:

-1 Direct problem (no results for variance in case of the stochastic CDE).
0  Direct problem (results for given parameters).
1 Inverse problem (parameter estimation).

5 Integer MODE Model code:

Deterministic equilibrium CDE.

Deterministic nonequilibrium CDE.

Stochastic equilibrium CDE with f{v,K) and p,,=1.

Stochastic nonequilibrium CDE with fiv,K;) and p,,=1.
Stochastic equilibrium CDE with f{v,D) and p~-1.
Stochastic nonequilibrium CDE with f{iv,D) and p/~-1.
Stochastic nonequilibrium CDE with fv,), p.x7~-1 and p,p=1.

NN LW -
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Table 6.3. (continued)

Line Type Variable  Description
5 Integer NREDUY  Input and output data code:
0 Time and position are dimensional (adsorbed concentration for the
stochastic nonequilibrium CDE is <s>).
1 Time and position are dimensional (adsorbed concentration for the
stochastic nonequilibrium CDE is <s/K>).
2 Time and position are dimensionless.
3 Dimensionless time and dimensional position.
6 - - Comment line.
7 Integer MODC Concentration mode.
Deterministic CDE (MODE=1 or 2):
1,2 Flux-averaged concentration, Cy.
3 Resident concentration (third-type inlet), C,.
4  Total resident concentration (third-type inlet),
C=RC, or fRC;,+(1-ARC,,.
5 Resident concentration (first-type inlet), C,.
6  Total resident concentration (first-type inlet),
Cr~RC, or fRC, +(1-PRC,,.
Stochastic CDE (MODE-23):
1  Ensemble-averaged flux concentration, <Cp>.
2 Field-scale flux-averaged concentration, (:'f =<vC>/<v>.,
3 Field-scale resident concentration (third-type inlet), C‘, =<C,>.
4  Field-scale total resident concentration (third-type inlet),
Cr=<RC,> or<C,, + R-1)C,,>.
§  Field-scale resident concentration (first-type inlet), C‘, =<C >
6  Field-scale total resident concentration (first-type inlet),
Cp=<RC,> or <C,,+R-1HC,, >
7 Real ZL Characteristic length for dimensionless parameters (see Table 2.1 and 3.1,
leave blank for NREDU=1 in case of equilibrium CDE with MODE=1,3,5).

1 Dimensional and dimensionless concentrations are equal if ¢,=1 (cf. Table 2.1 and 3.1). Specify dimensional z and
y according to (2.5) and (2.6) for the equilibrium CDE (MODE=1,3,5) when NREDU=0 or 1. Use dimensionless
4 and y (cf. Table 2.1 and 3.1) in all other cases.
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Block B. Inverse Problem Parameters (Table 6.4)

This block contains data for the parameter estimation procedure. The parameter MIT specifies
the maximum number of iterations. A value between 50 and 100 is recommended for MIT, a further
reduction in SSQ is unlikely for MIT greater than 100. The inversion part is bypassed when MIT=0;
the program then calculates concentrations for the specified initial parameters. This option is
equivalent to solving the direct pfoblem (INVERSE=1), provided that values for time and position
are specified in Block G. The arrays INDEX(I) in Block C and C(I) in Block G are now read in as
dummy information.

The parameter ILMT serves as a flag for parameter constraints. If the range of an estimated
parameter is known, e.g., based on physical considerations or from experimental observations,
maximum and minimum constrain_ts can be specified by setting ILMT = 1. Although unrealistic
parameter estimates are avoided in this manner, the rate of convergence is usually slower. Ifthe same
value is used as maximum and minimum constraint, there will be no constraint on that particular
parameter during the optimization.

The input mass can be estimated along with transport parameters for either a Dirac input, stép
input, or pulse fnput by setting MASS = 1. When MASS = 1, it is necessary to give parameters for
the mass estimation in Block D (ILMT, maximum and minimum constraints). This option should only
be used as a last resort since a poor mass balance generally reflects discrepancies between the
experiment and the conceptual transport model.

The parameter MNEQ specifies the type of nonequilibrium model being implemented. For the
one-site model (MNEQ=1), fis always equal to 1/R. This option may be useful when R is a fitting
parameter. For the two-region model, no internal constraints on f are applied if MNEQ=0
(0<4<0.9999 for ILMT=0 or the user can specify constraints for ILMT=1). When MNEQ>2,
internal constraints according to (5.26) or (5.27) are applied during the iteration. The user can still
impose additional constraints (ILMT=1).

The relation between degradation coefficients for phase 1 (u,) and phase 2 (u,) is specified with
the parameter MDEG (cf. Table 3.5). When MDEG=0, these coefficients are estimated
independently; they are related according to Table 6.4 when MDEG>0. The fraction of mobile water,
@, should be given if MNEQ=3 or if MNEQ=0 and MDEG:>2.
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Table 6.4. Block B - Parameters for Inverse Problem

Line Type Variable Description
1,2 - - Comment lines.
3 Integer MIT Maximum number of iterations (the inverse part is bypassed if MIT = 0, the

program calculates concentrations at specified Z(I) and T(I) using the initial
estimates as model parameters).

3 Integer ILMT Parameter constraint code:
0  No constraints for parameter estimation.
1  Use minimum and maximum constraints.

3 Integer MASS Total mass estimation code. This option is only available for the BVP in case of
a Dirac, step-type, or single pulse input (see Block D; enter a dummy value or
zero if MODB=0 or >4).

0  No estimation for total mass.
1  Total mass included in estimation procedure.

Omit the following lines for the equilibrium CDE (MODE=1,3,5).
4 - - Comment line.

5 Integer MNEQ Nonequilibrium model code (MNEQ=1 for the stochastic one-site model):
0 Two-region physical nonequilibrium model (0<5<0.9999).
1 One-site chemical nonequilibrium model (4=1/R).
2 Two-site chemical nonequilibrium model (1/R<£<0.9999).
3  Two-region physical nonequilibrium model with internal constraints

(@R < f < (@, +R-1)/R).

5 Integer MDEG Degradation estimation code for the nonequilibrium CDE
(enter a dummy value if u, and u, are not fitted):
0  Solution and adsorbed phase degradation rates are independent.
1 Degradation everywhere the same (u=g,).
2 Degradation only in the liquid phase (u>0, u=0).
3  Degradation only in the adsorbed phase (¢,=0, u>0).

The following lines should only be provided if MNEQ=3 or MNEQ=0 and MDEQ:>2.
6 - - Comment line.

7 Real PHIM Mobile water fraction, ¢,= 6,/6.
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Block C. Transport Parameters (Tables 6.5 and 6.6)

This block contains general transport parameters. IfNREDU = 1, dimensional values for 4 and
¥ should be specified according to (2.5) and (2.6) for the equilibrium CDE (MODE = 13,5). If
NREDU#1, dimensionless values for 4* and y* are used in the input and output files (see Table 2.1).
The degradation and production parameters are always dimensionless for the nonequilibrium CDE
(MODE = 2,4,6,8).

Since K, is used as an input parameter for the stream tube model (MODE->3), the (deterministic)
value for p,/ @needs to be entered for evaluating R. For nonreactive solutes (K, =0 and R = 1), the
value for p,/ is immaterial and a dummy value can be entered. The program uses ensemble averages
to generate dimensionless variables, for example:

- <v>t = a(<R>-1)L

L <p>

T (6.1a,b)

We assume that the degradation coefficients in the liquid and adsorbed phases are identical (u,= u,)
for stochastic equilibrium transport. Hence, u = u,<R> for a stochastic K.

Stochastic parameters can be made deterministic by simply setting o= 0. Ifvis deterministic (g,
=0), any parameter that is perfectly correlated with v will become deterministic as well (D for MODE
= 3,4; K, for MODE = 5,6; and D and K for MODE = 8). Since the pdf is bivariate, only one
parameter will remain stochastic in this case (K, for MODE = 3,4; D for MODE = 5,6; & for MODE
=8). CXTFIT 2.1 cannot be executed if the standard deviation of each parameter in the stream tube
model is zero. Instead, the deterministic CDE should be used as the transport model. If the same
initial estimate is provided for the standard deviations of v and 7, CXTFIT 2.1 will assume that g,

= g, throughout the optimization procedure.
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Table 6.5. Block C - Transport Parameterst

Line Type Variable Description

1,2 - - Comment lines.
Transport parameter values.

Deterministic CDE (MODE=1,2):

3 Real B(1) Initial value for each coefficient.
3 Real B(2) '
3 Real B(NP)
Stochastic CDE (MODE: 3):
3 Real BQ1) Initial value for each coefficient.
3 Real B(2)
3 Real B(NP)
3 Real RHOTH Value for p,/6.

Omit the following if INVERSE=0 (direct problem).
4 Integer INDEX(1) Parameter estimation index for B(1).
0 Coceflicient is known and kept constant during optimization.
1 Coefficient is unknown and estimated by curve fitting the data.
4 Integer INDEX(2) Parameter estimation index for B(2).
4 Integer INDEX(NP) Parameter estimation index for BONP).

Omit the following if ILMT=0 (no constraints).

5 Real BMIN(1)} Minimum constraint for B(1) (dummy value if INDEX(1)=0).
5 Real BMIN(2) Minimum constraint for B(2) (dummy value if INDEX(2)=0).
5 Real BMINNP)  Minimum constraint for BONP) (dummy value if INDEX(NP)=0).
6 Real BMAX(1)}  Maximum constraint for B(1) (dummy value if INDEX(1)=0).
6 Real BMAX(2) Maximum constraint for B(2) (dummy value if INDEX(2)=0).
6 . Real BMAX(P) Maximum cohstraint for BONP) (dummy value if INDEX(NP)=0).

t Parameters for B(I) are given in Table 6.6.
1 No constraints will be imposed on B(I) if BMIN(I)=BMAX(I).
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Table 6.6. Parameters for B(I) in Block C

MODE NP Bd) B2 BG) B@ B() B@®) BT B@®B BO Buo) B -
1 4 v D R puoryt - - - - - - - -
2 7 v D R /i w U M - - - - -
3 8 <v> <D> <Kp> uory® o, Oa Op Pu pl0 - - -
4 10 <v> <D> <Kp> @ m Iy g, Oka op Pua  P/6 -
5 8 <v> <D> <Kp> puory® o, Ou O Pp PO - - -
6 10 <> <D> <K @ 1y Iy g, O gy Po P10 -
7 11 <> <D> <Kp <> M s o, O gp o, P P10

Block D. Boundary Value Problem (Table 6.7)

Table 6.2 lists the different functions that can be used fof the input concentration as a function
of time in the boundary value problem (BVP). The same format should be followed for the
deterministic and the stream tube model. The dimension for time in the input function should be
consistent with NREDU in Block A. The step (MODB = 2) and pulse (MODB = 3) input functions
are special cases of the general multiple pulse input scenario (MODB = 4). The maximum number
of pulses is 10. Solutions of the BVP for a user-defined input function (MODB = 6) are obtained
according to (2.15) for the equilibrium CDE, and (3.13) and (3.14) for the nonequilibrium CDE. The
input function needs to be specified by the user in the routine CINPUT in source program
USER.FOR. The program always needs to be recompiled when the input function is being changed.
This option (MODB = 6) is not available for the stream tube model (MODE = 4,6,8).

Note that INDEX, and the minimum and maximum constraints, should be specified if the total
solute mass is a fitting parameter for either Dirac delta, step, or pulse input (MASS = 1 in Block B).
For the stochastic CDE with a random v, the parameter MASSST specifies the mass distribution

between stream tubes for a Dirac delta input and a pulse input (cf. Figures 4.3 and 4.4).
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Table 6.7. Block D - Boundary Value Problem?

Line Type Variable Description

‘1,2 - - Comment lines.

(0) Solute free water input

3 Integer MODB 0

(1) Dirac Delta input

3 Integér MODB 1

4 Real PULSE(1) mplv or <mp>/<v> for dimensional &),

Mj or <M> for dimensionless &7).

4 Real MASSST Mass distribution index for the stochastic CDE (leave blank for the determinis-
) tic CDE, i.e., MODE<2).
0 Amount of solute in each tube is proportional to v (mg=v<mg>/<v>),
1 Amount of solute in each tube is constant regardless of v (my=<mp>).

Omit the following if INVERSE=0 (Block A) or MASS=0 (Block B).

5 Integer INDEX(NP+1)  Parameter estimation index for solute mass (=B(NP+1)).
0 Coefficient is known and kept constant.
1 Coefficient is assumed to be unknown and fitted to data.

Omit the following if there are no constraints (ILMT=0, Block B).

6 Real BMIN(NP+1)  Minimum constraint for B(NP+1) (dummy value if INDEX(NP+1)=0).
7 Real BMAX(NP+1) Maximuin constraint for BONP+1) (dummy value if INDEX(NP+1)=0).
(2) Step input

3 Integer MODB 2

-4 Real PULSE(1) Input concentration, f].
Omit the following if INVERSE=0 (Block A) or MASS=0 (Block B).
5 Integer INDEX(NP+1)  Parameter estimation index for input concentration (=B(NP+1)).
' 0 Coefficient is known and kept constant.
1 Coefficient is assumed to be unknown and fitted to the data.
Omit the following if there are no constraints (ILMT=0, Block B).

6 Real BMIN(NP+1)  Minimum constraint for BONP+1) (dummy value if INDEX(NP+1) =0).

7 Real BMAX(NP+1)  Maximum constraint for B(NP+1) (dummy value if INDEX(NP+1) =0).
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Table 6.7. (continued)

Line Type Variable Description

(3) Pulse input of application time, 7,

3 Integer  MODB 3

4 Real PULSE(1) Input concentration, f;.

4 Real TPULSE(2) Application time, T, or <T,>.

4 Real MASSST Mass distribution index for the stochastic CDE (leave blank if MODE<2).

0 Application time, T, is constant for all stream tubes and the amount of
solutes in each stream tube is proportional to v (MODE=5 and 6 in prior
CXTFIT version as discussed in section 6.6).

1 Application time, 7,, is equal to <T,><v>/v for each stream tube. All
stream tubes have the same amount of solutes (MODE=7 and 8 in prior
CXTFIT version as discussed in section 6.6).

Omit the following if INVERSE=0 (Block A) or MASS=0 (Block B).

5 Integer INDEX(NP+1)  Parameter estimation index for PULSE(1)(=B(NP+1)).

0 Coefficient is known and kept constant.

1 Coefficient is assumed to be unknown and fitted to data.
5 Integer INDEX(NP+2)  Parameter estimation index for PULSE(2)(=B(NP+2)).

Omit the following if there are no constraints (ILMT=0, Block B).

6 Real BMIN(NP+1) Minimum constraint for BINP+1) (dummy value if INDEX(NP+1)=0).
6 Real BMIN(NP+2) Minimum constraint for BINP+2) (dummy value if INDEX(NP+2)=0).
7 Real BMAX(NP+1)  Maximum constraint for BONP+1) (dummy value if INDEX(NP+1) =0).
7 Real BMAX(NP+2)  Maximum constraint for B(NP+2) (dummy value if INDEX(NP+2) =0).
(4) Multiple pulse input} (see Figure 2.1)

‘3 Integer MODB 4

4 Integer NPULSE Number of pulses, .

5 Real PULSE(1) Input concentration of the first pulse, f;.

5 Real TPULSE(1) Starting time of the first pulse, 7;=0.

6 Real PULSE(2) Input concentration of the second pulse, f,.

6 Real TPULSE(2) Starting time of the second pulse, 7.

NPULSE+4  Real PULSEQ"PULSE)  Input concentration of the last pulse, f,.

NPULSE+4  Real TPULSE(NPULSE)  Starting time of the last pulse, 7,,.
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Table 6.7. (continued)

Line Type Variable Description
(5) Exponential input concentration, f;+fexp(-42T)
3 Integer MODB 5

4 Real - PULSE(1) Value of ;.

4 Real PULSE(Q2) Value of ;.

4 Real TPULSE(1) Value of A2,

6) Arbi function, C (T)*

3 Integer MODB 6

t The dimension for time in the input function should be specified according to the value of NREDU (Block A). Use
dimensional time, ¢ (i.¢., d, h, min, sec) when NREDU<]1.
1 Step and pulse input are special cases of the multiple pulse input function.

* Specify the general C,(7) in routine CINPUT in source program USER.FOR. This option is not available for the
_stream tube model (MODE=4,6,8)

Block E. Initial Value Problem (Table 6.8)

Table 6.2 also lists the functions that can be used to define the initial concentration in the initial
value problém (IVP). Data entry for this block is identical for the deterministic and the stream tube
model. Similar to the BVP in Block D, the dimension for position in the initial distribution should
be consistent with the value for NREDU specified in Block A. The maximum number of steps for
a stepwise initial distributionis 10. Since a first-type inlet condition specifies the concentration at the
surface, we can define a Dirac initial condition (MODI = 4) at the surface (x, = 0, Z, = 0) in case
MODC is S or 6 (see (2.23) and (3.33)).
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Table 6.8. Block E - Initial Value Problem?

Line Type Variable Description
1,2 - - Comment lines.
() Zero initial concentration
3 Integer MODI 0
(1) Constant initial concentration
3 Integer MODI 1
4 Real CINI(1) Concentration, U,.
(2) Stepwise Initial Distribution} (see Figure 2.2)
3 Integer MODI 2
4 Integer NINI Number of steps, n.
5 Real CINI(1) Concentration of the first step, U,.
5 Real ZINI(1) Starting position of the first step, Z,=0.
6 Real CINI(2) Concentration of the second step, U,.
6 Real ZINI(2) Starting position of the second step, Z,.
NINF-4. Real CINININD Concentration of the last step, U,
NINE-4 Real ZINININT Starting position of the last step, Z,,.
~ (3) Exponential initial distribution, U, + U, exp (-4'7)
3 Integer MODI 3
4 Real CINI(1) Value of U,
4 Real CINI(2) Value of U,.
4 Real ZINI(1) Value of 4/,
(4) Dirac delta initial condition, m,/8&x -x,) -+ U,, or M, &Z - Z,) + U,
3 Integer MODI 4
4 Real CINI(2) Value of m;/8 or M,.
4 Real ZINI(2) Value of x, or Z, (x, , Z,+0 when MODC=5,6).
4 Real CINI(1) Value of U,.

t The dimension for depth in the initial condition should be specified according to the value of NREDU (Block A).
1 Zero and constant initial concentrations are special cases of a stepwise initial distribution.
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Block F. Production Value Problem (Table 6.9)

Possible mathematical expressions for the production profiles in the production value problem
(PVP) are listed in Table 6.2. The input format for the PVP is almost identical to that for the IVP
(Block E). The dimension of position in the production function should again be consistent with the
value of NREDU in Block A. For the equilibrium CDE with dimensional times and positions
(NREDU = 0,1), the production function given by (2.6) is also dimensional. Different production
functions can be specified for phases 1 and 2 in the nonequilibrium CDE when MPRO = 1.

Table 6.9. Block F - Production Value Problem?t

Line Type Variable Description

1,2 - - Comment lines.
(0) No production term

3 Integer MODP 0

(1) Constant production

3 Integer MODP 1
4 Real GAMMAL(1) Production value in the equilibrium phase, ¥, or #,,.

Onmit the following for the equilibrium CDE (MODE=1,3,5).

5 Real GAMMA2(1) Production value in the nonequilibrium phase, ¥, .

(2) Stepwise production profile

3 Integer MODP 2

3 Integer MPRO Production function code for a nonequilibrium phase (leave blank if

MODE=1,3,or 3, i.c., the equilibrium CDE):
0 Same conditions for equilibrinm and nonequilibrium phases.
1 Different conditions for equilibrium and nonequilibrium phases.

4 Integer NPRO1 Number of steps in an equilibrium phase, .
5 Real GAMMAL(1) Production of the first step in the equilibrium phase, ¥, or ,,.
5 Real ZPROL(1) Starting position of the first step, Z, or Z, ,=0.
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Table 6.9. (continued)

Line Type Variable Description

6 Real GAMMAL(2) Production of the second step in the equilibrium phase, 7, or 7,,.

6 Real ZPRO1(2) Starting position of the second step, Z, or Z, ,.

NPRO1+4 Real GAMMAI(NPRO1) Pl‘OdllCthﬂ of the NPRO1" step in the equilibrium phase, ¥, or ¥;,,.
NPRO1+4 Real ZPROI(NPROL1) Starting position of the NPRO1™ step, Z, or Z, .

Omit the following for the equilibrium CDE (MODE=1,3,5) or if MPRO=0,

NPRO1+5 Integer NPRO2 Number of steps in the nonequilibrium phase, m.

NPRO1+6 Real GAMMA2(1) Production of the first step for the nonequilibrium phase, ¥, .

NPRO1+6 Real ZPROX(1) Starting position of the first step, Z, ,=0.

NPRO1+7 Real GAMMA2(2) Production of the second step in the nonequilibrium phase, 7, ,.

NPRO1+7 Real ZPRO2(2) Starting position of the second step, Z,,.

NPROL .« Real GAMMA2(NPRO1)  Production of the NPRO2" step in the nonequilibrium phase, ¥, .
. .. .

Ifﬁ%l% - Real ZPRO2(NPRO1) Starting position of the NPRO2" step, Z, .

(3) Exponential production profiles.  + ¥, exp (-4* 2)

3 Integer MODP 3

3 Integer MPRO Production function code for nonequilibrium models (leave blank if
MODE=1,3, or 5, i.e., the equilibrium CDE):
0 Same conditions for equilibrium and nonequilibrium phases.
1 Different conditions for equilibrium and nonequilibrium phases.

4 Real GAMMAI1(1) Value of 7, or ;.
4 Real GAMMAL(1) Value of %, or ¥,,.
4 Real ZPROL(1) Value of 4° or A7.

Omit the following if MPRO=0 or for the equilibrium CDE (MODE=1,3,5).

5 Real GAMMA2(1) Value of ;.
5 Real GAMMA2(1) Value of ,,.
5 Real ZPRO(1) Value of A5,

t Provide dimensional yaccording to (2.6) for the equilibrium CDE (MODE=1,3,5) with NREDU=1. Otherwise, use
dimensionless y as shown in Table 2.1 and 3.1 (see NREDU in Block A).
1 Constant production is a special case of a stepwise production profile.
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Block G. Observed Data for Inverse Problem (Table 6.10)

Observed data can be given in four different formats: (a) position, time, and observed
concentration (INPUTM=0); (b) time and observed concentration at a particular position (INPUTM
= 1); (c) position and concentration at a particular time (INPUTM = 2); and (d) similar as (a) but the
data are now given in a fixed format to allow the use of input files consistent with the previous
CXTFIT version (INPUTM = 3). Hence, data from breakthrough curves or concentration profiles
versus depth should be described with INPUTM equal to 1 and 2, respectively. It is not necessary
to specify the number of observations — the end of a data set should be marked by a line having
dummy zeroes. The maximum number of observed concentrations is determined by the parameter

MAXOB, which is defined at the top of the main program (the current default setting is 401).

Table 6.10 Block G - Observed Data for Inverse Problem?}

Line Type Variable Description
1,2 - - . Comment lines.
3 Integer INPUTM Input data code:

0 Z{DH, T, CO)

1 T(@), C{) for a fixed depth (breakthrough curve).

2 Z(D), C() for a fixed time (concentration vs. depth).

3 C(), Z(1), T(I) (Fixed format, 3F10.0, for CXTFIT version 1 data).

a) INPUTM=0
4 - - Comment line.
5 Real y/4)) Position of the first observation,
5 Real T(1) Time of the first observation.
5 _Real ca Value of the first observed concentration (dummy value if MIT=0),
6 Real ZQ2) Position of the second observation.
6 Real T(2) Time of the second observation.
6 Real - C@) Value of the second observed concentration (dummy value if MIT=0).
NOB+4 Real Z(NOB) Position of the NOB™ observation.
NOB+4 Real T(MOB) Time of the NOB™ observation.
NOB+4 Real C(NOB) Value of the NOB™ observed concentration (dummy value if MIT=0).
NOB+5 Real Dummy Enter 0 to mark end of data set.
NOB+5 Real Dummy Enter 0 to mark end of data set.
NOB+5 Real Dummy Enter 0 to mark end of data set.

76




Table 6.10. (continued)

Line Type Variable Description
INPUTM=1
4 Real DUMTZ Position of the breakthrough curve.
5 - - Comment line.
6 Real T(1) Time of the first observation. .
6 Real C) Value of the first observed concentration (dummy value if MIT=0).
7 Real T(2) Time of the second observation.
7 Real CQ) Value of the second observed concentration (dummy value‘ if MIT=0).
NOB+5 Real T(MOB) Time of the NOB™ observation.
NOB+5 Real C(NOB) Value of the NOB™ observed concentration (dummy value if MIT=0).
NOB+6 Real Dummy Give 0 to mark end of data set.
NOB+6 Real Dummy Give 0 to mark end of data set.
¢) INPUTM =
4 Real DUMTZ Time of the solute profile.
5 - - Comment line.
6 Real Z(1) Position of the first observation.
6 Real cQ) Value of the first observed concentration (dummy value if MIT=0).
7 Real Z(2) Position of the second observation.
| 7 Real CQ2) Value of the second observed concentration (dummy value if MIT=0),
NOB+5 Real Z(NOB) Position of the NOB® observation.
‘ NOB+5 Real C(NOB) Value of the NOB™ observed concentration (dummy value if MIT=0).
NOB+6 Real Dummy Give 0 to mark end of data set.
NOB+6 Real Dummy Give 0 to mark end of data set.

(d) INPUTM = 3 (Fixed format, 3F10.0, for CXTFIT version 1 data)

| 4 - - Comment line.
‘ 5 Real Cc) Value of the first observed concentration (dummy value if MIT=0).
5 Real (1) Position of the first observation.
5 Real T(1) Time of the first observation.
6 Real CQ) Value of the second observed concentration (durnmy value if MIT=0).
6 Real Z(2) Position of the second observation.
6 Real T(2) Time of the second observation.
NOB+4 Real C(NOB) Value of the NOB™ observed concentration (dummy value if MIT=0).
NOB+4 Real Z(NOB) Position of the NOB™ observation.
NOB+4 Real TMOB) Time of the NOB™ observation.
NOB+5 Real Dummy Give 0 to mark end of data set.
NOB+5 Real Dummy Give 0 to mark end of data set.
NOB+5 Real Dummy Give 0 to mark end of data set.

t IfMIT=0 concentrations are calculated at specified Z(I) and T(I) using the initial parameter estimates.
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Block H. Position and Time for Direct Problem (Table 6.11)

The concentration is calculated for a user-defined grid system of times and positions. The

maximum number of concentrations that can be calculated in this way is given by MAXOB (= 401).

IfMPRINT = 1, the concentration is assumed to be given as a function of time, while for MPRINT

= 2 the concentration is given versus depth.

Table 6.11. Block H - Position and Time for Direct Problem

Line Type Variable Description

1,2 - - Comment lines.

3 Integer NZ Number of output positions.

3 Real DZ Spatial increment for output.

3 Real Z] Initial value of output position.
3 Integer NT Number of output times.

3 Real DT Time increment for output.

3 Real TI Initial value of output time.

3 Integer MPRINT Output print code:

1 Concentration vs, time.
2 Concentration vs. depth.

78




6.3. Example Input and Output Files

We will present in this section some typical examples of direct and inverse problems. All input

and output files for the examples are provided on the distribution diskette.

6.3.1. Direct Problem

Tables 6.12 and 6.13 are input and output files for the deterministic nonequilibrium CDE (cf,
Figure 7.6a). Block H in the input file is used to specify the grid of times and positions for which
concentrations are to be calculated. The parameter NCASE, on the first line of the input file,
specifies the number of cases considered. The output file shows the conditions for the simulation as
well as calculated results for times and positions specified in Block H. The concentration is given as
a function of time if MPRINT = 1 (Block H), or as a function of position (distance) if MPRINT = 2.
To check the mass balance, zeroth time (MPRINT = 1) and depth (MPRINT = 2) moments are

calculated according to:

n—f

Sum(C*dT)=Y_ (C,+ C,,)aT/2 6.2)
i=1
n-1

Sum(C*dZ) =Y (C,+C,,)aZ/2 (6.3)

i=1

Table 6.12. Input File for Figure 7.6a
T

e ke % BLOCKA: MODEL DESCRIPTION ko e ke ok ke ke ok ok ok ke ke ke ke sk e ke ke e ke ke ke ok ke ke ok e e sk ok vk ke ke vk ke o e ke ok ke e R
Fig7-6a. Two-site CDE (Alpha=0.08,£=0.7)
Effect of the fraction of equilibrium site, f

INVERSE MODE NREDU
0 2 1
MODC ZL
1 50
* ek BLOCK C: TRANSPORT PARAI\/IETERS e e e e ok ok ke ke e vk kb ke e sk sk ok sk ke ok sk e ke sk ke ke ke ok ke ke sk ok R ke e e ke ok
\% D R Beta omega Mul Mu2
20. 10. 5.0 0.44 0.56 0.0 0.0
** BLOCK D: BVP; MODB=0 ZERO; =1 Dirac; =2 STEP; =3 A PULSE *k%kkkkdkkskdx
MODB =4 MULTIPLE; =5 EXPONENTIAL; =6 ARBITRARY
1
1.0
*%*x BLOCK E: IVP; MODI=0 ZERO; =1 CONSTANT; =2 STEPWISE; =3 EXPONENTIAL **
MODI
0
**%* BLOCK F: PVP; MODP=0 ZERO; =1 CONSTANT; =2 STEPWISE; =3 EXPONENTIAL **
MODP
0
**%* BLOCK H: POSITION AND TIME FOR DIRECT PROBLEM % ok ook ook sk ok deok ok ko deok ek
NZ DZ ©Zl NT DT TI MPRINT
1 1.0 50.0 101 0.2 0.0 1
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Table 6.13. Output File for Figure 7.6a

e ke de ok ok ke ek k ke e sk e e ok ke sk ok sk sk e sk ok ok ok ok sk ok ok e sk ok R ke o ok sk ke ok ke e ok ok ke ke e e ke e ok e ok ke e ok ke ok e sk ok ok e sk ok ok ke e

d *
* CXTFIT VERSION 2.0 (1/2/95) *
* ANALYTICAL SOLUTIONS FOR ONE-DIMENSIONAL CDE *
* DIRECT PROBLEM *
* *
* Fig7-6a. Two-site CDE (Alpha=0.08,f=0.7) *
* Effect of the fraction of equilibrium site, £ *
L3 *
* DATA INPUT FILE: FIG7-6A.IN *
* *
* *

e e ode e ke e e ke e e e ok ok ke e e ke ok ok ke ok sk ke ok ek ke sk ke ke ke ke ke ok ok ke ok ok sk ke ke ke vk e ke ke e e e ok ok ke o ok ok ok ke ok ok

MODEL DESCRIPTION

DETERMINISTIC NONEQUILIBRIUM CDE (MODE=2)
FLUX-AVERAGED CONCENTRATION
REAL TIME (t), POSITION(x)
(D AND V ARE DIMENSIONAL;
R,beta, omega,mu, AND gamma ARE DIMENSIONLESS)
CHARACTERISTIC LENGTH = 50.0000
FOR DIMENSIONLESS PARAMETERS

INITIAL VALUES OF COEFFICIENTS

NAME INITIAL VALUE
Veieeennaa . 2000E+02
Dieuwvinne .1000E+02
2 .5000E+01
beta..... .4400E+00
omega. ... .5600E+00
mul...... .0000E+00
m2..... . .0000E+00

BOUNDARY, INITIAL, AND PRODUCTION CONDITIONS

DIRAC DELTA INPUT , MASS = 1.0000
SOLUTE FREE INITIAL CONDITION
NO PRODUCTION TERM

$ Z= 50.0000 (FLUX CONC. VS. TIME)

$ Sum(Cl*dT)= .8207, Sum(C2%dT)= .5062
$ TIME Cc1 c2 :

.0000 .00000E+00 .00000E+00
.5000 .00000E+00 .00000E+00
1.0000 .00000E+00 .00000E+00
49.0000 .93484E-03 .51409E~02
49.5000 .90217E-03 .49753E-02
50.0000 .87064E-03 .48150E~02
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6.3.2. Parameter Estimation
Tables 6.14 and 6.15 are input and output files for parameter optimization. Observed data were
fitted with the deterministic nonequilibrium two-region model (cf. Figure 7.9b). In the input file,

Block B specifies the conditions for the parameter estimation, while the observed data are given in
Block G.

Table 6.14. Input File for Figure 7.9b

1
Je k& BLOCK A: MODEL DESCRIPTION ek e de sk ke ke vk ke e ke e ke e otk stk ke ek ke e ke ke ke e ok ok o e ke ke ke e e ok ok ok ke ok e ke ok
Fig 6.9b:BORON EFFLUENT (Exp3-1,van Genuchten, 1974)
(Kd=1.04, unit, cm, d, micro g) (CXTFIT,EX.4A,Fig.5)

INVERSE MODE .NREDU
1 2 2
MODC ZL
1 30.0
ok BLOCK B: INVERSE PROBLE}II e e ke sk sk ok ke ke ke ke ke ke ke ke ok K ke ke ke ok ok ok sk e e e ke e ke e ok e ok ke ke e ok ok ke ok ke ke ke ke
MIT IIMT MASS
50 0 0
MNEQ MDEG
0 0
* %k BLOCK C: TRANSPORT PARAN[ETERS dokkkkkhkkhkhkhhkhkdbhdhkdhhhbhbkhkdkdkdkkddhhkkhodkkdkk
v D R Beta omega Mul Mu2
38.5 15.5 3.9 0.5 0.2 0. 0.
0 0 0 1 1 0 0

*%% BLOCK D: BVP; MODB=0 ZERO; =1 DIRAC; =2 STEP; =3 A PULSE ***k¥kkkwkkk
MODB (Reduced Conc.& time) =4 MULTIPLE; =5 EXPONENTIAL; =6 ARBITRARY

3
1.0 6.494
**% BLOCK E: IVP; MODI=0 ZERO; =1 CONSTANT; =2 STEPWISE; =3 EXPONENTIAL **
MODI
0
*%% BLOCK F: PVP; MODP=0 ZERO; =1 CONSTANT; =2 STEPWISE; =3 EXPONENTIAL **
MODP
0

*%% BLOCK G: DATA FOR AN INVERSE PROBLEM *# k&% %k sk ks ok ko ok ok dok ok ok ook ook ok ok okok ok
INPUTM =0; Z2,T,C =1; T,C FOR SAME Z =2; Z,C FOR SAME T

1
1.0
TIME CONC (Give "0 O O" after last data set.)
1.80 0.015
1.95 0.075
17.00 0.040
18.50 0.029
20.00 0.025
0 Q
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The first part of the output file gives the conditions for the simulation and parameter estimation.
The goodness of fit is described with the coefficient of determination, 7, for the regression of

observed versus fitted concentrations:

N
C.-f)
2. C-f) ] $50

N _ =1- N _
> (C,-Cy > (C,-CY
i01 i-1

ri=1- (6.4)

where C, and f; are observed and fitted data, respectively, and C is the mean of all N observed
concentrations. A value for 7 close to unity indicates a good fit whereas values close to zero indicate
a relatively poor description of the observed data by the selected model. The reliability of the
parameter estimation may also be assessed with the parameter covariance matrix [Kool and Parker,
1988]. Once an acceptable minimum of the objective function (SSQ) has been found, a first-order
approximation of the bparameter covariance matrix is obtained from

C=s5A"! | (6.5)
where 52 is an estimate of the variance due to error for M fitted parameters. The variance is
approximated by the mean square for error (MSE):

S$SQ
MSE = 22X
N-M (6.6)

and A is given by (5.22). The standard error of the parameter b, (denoted as S E. COEFF. in the
output file) is given by (C;)"? while the T-value is given by b,/(C ;). 'The values for T and the
standard error provide relative and absolute measures of deviations around the mean parameter value;
a high value for T is desirable. The covariance matrix, «, for the fitted parameters is obtained by
simply dividing the elements of C by the parameter standard error:

C,
=

(C)"(C)

In addition, the boundaries of the 95 % confidence region are calculated using the appropriate value

6.7)

of Student's # distribution:
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- _ 112
bj,min - bj,ﬁt tN-M,0.975 (Cg‘)

b,

- 12
) max = Oyt * tyago97s (Cp)

(6.8)

(6.9)

where b, is the fitted parameter value, and #,,,,5 is the value of the # distribution for confidence
level 0.95 with N - M degrees of freedom. |

It should be noted that since (6.5), (6.8), and (6.9) are based on linear regression analysis, they

hold only approximately for the nonlinear analysis as was discussed by Kool and Parker [1988].

However, (6.8) and (6.9) will yield reasonable approximations for individual parameter confidence

intervals if no constraints are used and b, represents the true global minimum of the objective

function.

Table 6.15. Output File for Figure 7.9b

ke ok ke ke ke ke ke ke ke e e ok ok gk sk s sk ke ok ok ke ke ke sk e ok e ke ok e ke sk ke ke kR ke e ke ke ke vk ke e ke e sk e ke ke ke sk ke ke ok ke ok ke R ok ke ke ok e e

* ok ok Ok O F ® O * Ok

CXTFIT VERSION 2.1 (4/17/99)
ANALYTICAL SOLUTIONS FOR ONE-DIMENSIONAL CDE
NON-LINEAR LEAST-SQUARES ANALYSIS

Fig 6.9b:BORON EFFLUENT (Exp3-1,van Genuchten, 1974)
(Kd=1.04, unit, cm, d, micro g) (CXTFIT,EX.4A,Fig.5)

DATA INPUT FILE: FIG7-9B.IN

* Kk K ok Kk oF k Kk A ok

hkkdhdedkhhdhkddbhbbhhhhhkddkdkdkdhdhhhkhhhhhodkhdod ok kkddkdkdkhhkdhdhddodkdhhdd bk bk

MODEL

DESCRIPTION

DETERMINISTIC NONEQUILIBRIUM CDE (MODE=2)
FLUX-AVERAGED CONCENTRATION
REDUCED TIME (T), POSITION(Z)

(ALL PARAMETERS EXCEPT D AND V ARE DIMENSIONLESS)

CHARACTERISTIC LENGTH = 30.0000

FOR DIMENSIONLESS PARAMETERS

INITIAL VALUES OF COEFFICIENTS

INITIAL VALUE FITTING
ceeen .3850E+02
..... .1550E+02
..... .3900E+01
..... .5000E+00
- RPN .2000E+00
PP .0000E+00
..... .0000E+00

ZzZz=<Z2Z2
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Table 6.15. (continued)

BOUNDARY, INITIAL, AND PRODUCTION CONDITIONS

SINGLE PULSE OF CONC, = 1.0000 & DURATION =
SOLUTE FREE INITIAL CONDITION
NO PRODUCTION TERM

PARAMETER ESTIMATION- MODE

MAXIMUM NUMBER OF ITERATIONS = 50
TWO-REGION PHYSICAL NONEQUILIBRIUM MODEL

ITER ssQ beta. omega
0 .1563E+01 .500E+00 .200E+00
1 .1628E+00 .554E+00 .564E+00
2 .8561E-01 .571E+00 .712E+00
3 .8460E-01 .576E+00 .707E+00
4 .8459E-01 ,578E+00 .700E+00
5 .8459E-01 .578E+00 .700E+00

COVARIANCE MATRIX FOR FITTED PARAMETERS

beta. omega
beta. 1.000
omega =-.756 1.000

6.4940

RSQUARE FOR REGRESSION OF OBSERVED VS PREDICTED = .96970540

(COEFFICIENT OF DETERMINATION)

MEAN SQUARE FOR ERROR (MSE) = .3021E-02

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

95% CONFIDENCE LIMITS

NAME VALUE S.E.COEFF. T-VALUE LOWER
beta. .5780E+00 +.1410E-01 .4100E+02 .54 92E+00
omega .6999E+00 .8397E-01 .8336E+01 .5279E+00

CONCENTRATION
NO DISTANCE TIME OBS FITTED
1 1.0000 1.8000 .0150 .0594
2 1.0000 1.9500 .0750 .1253
3 1.0000 2.1000 .1700 .2120
4 1.0000 2.2500 .2650 .3050
5 1.0000 2.4000 +3400 .3902
[ 1.0000 2.6000 .4300 L4794
7 1.0000 2.8500 .5350 .5523
25 1.0000 12.7000 .1330 .1356
26 1.0000 14.0000 .0900 .0912
27 1.0000 15.5000 .0540 .0573
28 1.0000 17.0000 .0400 .0358
29 1.0000 18.5000 .0290 .0222
30 1.0000 20.0000 .0250 .0137

UPPER
. 6069E+00
.8720E+00
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6.4. CXTFIT 1.0

This section outlines the difference in input format for CXTFIT 2.1 and its predecessor, version
1 [Parker and van Genuchten, 1984]. This information is included to quickly familiarize users of the
prior CXTFIT program with the current version. All functions in CXTFIT 1.0 are also included in
version 2, except for paramefer estimation of the constant production term, ¥, in the equilibrium CDE
(MODE = 1,2 in version 1). Many examples were tested using the two versions; identical results
were obtained in most cases, while at times the parameter optimizatidn was slightly better for

CXTFIT 2.1. Changes in the input structure are outlined below.

Model Type and Concentration Mode

In version 1, the parameter MODE specified model type and concentration mode. In version 2,
the parameters MODE and MODC in Block A specify the model type and the concentration mode,
respéctively. The resident concentration in version 1 is identical to the resident concentration for a
third-type inlet condition in version 2 (MODC = 3). Field-scale flux averaged concentrations in

version 1 are specified by MODC = 2 in CXTFIT 2.1 (cf. Table 6.1).

Estimation of Solute Application Time
The pulse duration was estimated as a transport parameter in version 1. In this version, the user

also needs to set MASS = 1 in Block B and INDEX = 1 for the application time in Block D.

Degradation Coefficient
The degradation coefficient u for the deterministic CDE was always dimensional in version 1.

As explained in Block C, u may be dimensional or dimensionless in version 2, depending upon the

~ value of NREDU in Block A.
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Characteristic Length

The characteristic length L for nondimensional parameters in version 1 was defined internally as
the maximum value of the independent variable, x. Instead, a value for L now has to be entered by
the user in Block A. This modification allows greater flexibility, while nondimensional parameters,
such as w, can also be made independent froni the maximum depth for a particular set of

observations.

Stochastic Model with Random v

The stochastic model in version 1 consisted of a stream tube model with random pore-water
velocity, v. Additional stochastic parameters can be used in version 2 as discussed in Chapter 4. The
case of only a stochastic v can be modeled in CXTFIT 2.1 by setting the other standard deviations

of all other parameters to zero.

Constant Local-Scale Dispersivity
In version 1 only a constant dispersivity, 4, could be used (see (4.25)). To do this in version 2,
identical initial estimates for g, and g, (MODE = 3) should be entered to keep A constant during the

parameter estimation in process. The input parameter is <D>.

Stochastic Model for Pulse Input of Constant Duration
A constant application time for the stochastic model (MODE = 5,6 in version 1) can now be given
by setting MASSST = 0 for MODB = 3 in Block D (see Figure 4.4).

Stochastic Model with Constant Mass

The stochastic model with constant mass (MODE = 7,8 in version 1) can be evaluated in version
2 by setting MASSST = 1 for MODB = 3 in Block D.
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7. EXAMPLE PROBLEMS

This chapter contains several examples to illustrate the application of CXTFIT 2.1 to different
transport scenarios. Both solutions of the direct and the inverse problem will be discussed for several
types of boundary value (BVP), initial value (IVP), and production value (PVP) problems. A third-

type inlet condition is used in all example problems, while concentrations in the examples are always

~ normalized with respect to the input concentration or initial concentration (Tables 2.1 and 3.1). The

input and output files for each example can be found on the distribution diskette.
7.1. Deterministic Equilibrium CDE (MODE =1)
7.1.1. Direct Problem

The first two examples deal with the solution of the direct problem for the equilibrium CDE.

Figure 7.1 illustrates the effect of the first-order decay constant x, as given by (2.5), on solute

2.0 T T T 1 T 1 ¢ i 4
1.5 -
o 1.0 -
0.5
0.0
0 20 40 60 80 100
X (cm)

Fig. 7.1. Effect of the first-order decay constant, x4, on calculated C,-profiles.
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distributions. The resident concentration was calculated 7.5 d after applying a single pulse input at
t=0 with duration 7, = 5 d to a solute-free soil profile assuming v=25 cmd™!, D=37.5 cm?*d", R
=3, and a constant rate of production y = 0.5 mg kg™' d"! [van Genuchten, 1981a). Notice that
when u increases, the concentration decreases as a result of the rise in degradation. Concentrations
were evaluated according to (2.34) for ¢ = 0 d” while (2.33) was used for z>0 d™.

Differences between resident (C,) and flux-averaged (C,) concentrations for the BVP have been
discussed extensiveiy by several authors [cf. Kreft and Zuber, 1978; Jury and Roth, 1990; van
Genuchten and Parker, 1984b]. We will illustrate the differences in concentration mode for the IVP
[Toride et al., 1993b]. Figure 7.2 shows C, and C, as a function of relative distance, Z, at
dimensionless time T'= 0.05 for two values of P when solute-free water is applied to a soil having a
stepwise initial resident distribution as indicated by the dashed line. Dispersive transport dominates
convective transport when P = 2, causing considerable spreading to occur in both the upstream and
downstream directions (Figure 7.22). Notice that at this small time (7' = 0.05), C, is negative for
Z2=0.5, and greater than unity (the initial resident concentration) for Z~1. These somewhat odd
results are a direct result of the definition of C; according to (2.13). Since the solute flux, J,, and the
water flux, J,, are vectors, C,becomes negative when the directions of these two fluxes are opposite.
The negative C, near the surface is the result of an upward dispersive solute flux in spite of a
downward convective solute flux. Similarly, C; is greater than C, if the gradient of C, becomes
negative. For relatively large negative gradients such as those in Figure 7.2 around Z = 1, C,can

become greater than the initial resident concentration C,(Z,0). Notice from Figure 7.2b that the

differences between Crand C, become smaller for an increased Peclet number, P.
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Fig. 7.2. Flux and resident concentrations versus depth at T=0.05 for a solute-free input
to a stepwise initial distribution: (a) P = 2, and (b) P =10.

7.1.2. Parameter Estimation

Figure 7.3 presents breakthrough curves (BTCs) measured by Shiozawa [1994, personal
communication] with four-electrode EC sensors at three different depths as a result of: (a) continuous
application of a 0.01 A NaCl solution to an initially solute-free saturated sand (8= 0.3), and (b)
leaching with solute free water during unsaturated condition (6= 0.12). The observations were

analyzed in terms of the equilibrium CDE with CXTFIT 2.1 assuming a resident mode (MODC = 3),

89




yielding estimates of the pore-water velocity, v, and the dispersion coefficient, D. The results are

givenin Table 7.1. The fitted v and D for each depth were almost identical. These results show that

the CDE is an appropriate model for describing transport in this column. Note from the data in Table

7.1 that the dispersivity, 4 (= D/v), is smaller for the saturated soil than for the unsaturated soil,

1.0 -
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0.4
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0.0

x=11cm
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23cm

1
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1.0 4
0.8 -
0.6 -
0.4 -

0.2

x=11cm

(b) 6 =0.12

0.0

i
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Fig. 7.3. Experimental and fitted breakthrough curves for (a) saturated (&= 0.3)
and (b) unsaturated (&= 0.12) sand.
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Table 7.1. Pore-Water Velocity, v, Dispersion Coefficient, D, and
Dispersivity, A, Obtained by Fitting the Data of Figure 7.3

Depth v D A

cm cm min’! c¢m® min’! cm
(a) Saturated (8= 0.3)

11 245 0.154 0.063

17 2.51 0.126 0.050

23 2.51 0.110 0.044
(b) Unsaturated (&= 0.12)

11 0.258 0.0357 0.14

17 0.254 0.0393 0.15

23 0.249 0.0429 0.17

The input mass can be used as a fitting parameter by setting MASS = 1 for a Dirac delta input and
a pulse input. For a pulse input either the application time or the input concentration can be
estimated. Figure 7.4 shows observations and the breakthrough curve obtained by fitting the duration
of the application for a pulse input, 7,, in addition to v and D. The concentration was measured with
a TDR probe at a depth of 10 cm for a pulse application of KCl solution to an undisturbed sandy soil
column [Mallants et al., 1994]. The fitted paramefers arev=234cmd', D=128cm’d ™, and ¢,

=0.8 h. We again note that mass balance errors are likely to have an adverse effect on the estimation

of all transport parameters.
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Fig. 7.4. Observed concentrations for a pulse input and
breakthrough curve obtained by fitting v, D, and ¢,.

7.2. Deterministic Nonequilibrium CDE (MODE =2)

7.2.1. Direct Problem

The first two examples below are included to demonstrate differences between the one-site and
two-site nonequilibrium models. The one-site model is a special case of the two-site model (cf.
Section 3.1.1); it is obtained by assuming that the fraction of equilibrium adsorption sites is zero (f
= 0). The kinetic rate coefficient, &, is then the only remaining nonequilibrium parameter in the
dimensional one-site nonequilibrium model.

Figure 7.5 shows the effect of a on the BTCs in terms of the flux-averaged concentration at x =
50 cm, as the result of applying a Dirac delta input function to an initially solute free soil. Other
parameters are v=20 cmd™', D= 10 cm*d™', and R =5. Note that #= 0.2, regardless of the values
for a, and that the solution of the equilibrium CDE (MODE = 1) was used to predict the BTC for
a~. The effect of a may be interpreted in terms of the adsorption time scale, 1/, a smaller &
suggests slower adsorption. For equilibrium adsorption, the solute peak occurs at £ ~ 12.5 d which

corresponds closely to the value for Rx/v. As & decreases, solute spreading increases. Some of the
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solutes are not readily adsorbed and move fairly quickly through the soil, while the remaining solutes
move much slower since, once adsorbed, solutes will move back into the solution phase at arelatively
slow pace. A concentration peak appears at 7=2.5 d as adecreases (a<0.2 d). In the extreme case
of #=0 (i.e., no adsorption), solute transport is described with the equilibrium CDE for nonreactive
solute (R=1).

0-6 v 1 1 1 ' 1 '
A One-site model (f = 0)
«=0.084d"
044 |1l 0 == 0.2 -
- - 1.0
- | .
o 1 1l e o (Equilibrium)
0.2 - A -
n' .'.. ‘.“
d I _ _"._ - . '.“ E
0.0 L. ===
0 10 15 20
t (d)

Fig. 7.5. Breakthrough curves at x = 50 cm for four values of &
as calculated with the one-site nonequilibrium model.

Figure 7.6 presents BTCs according to the two-site nonequilibrium CDE for four values of fusing
the same condition as in Figure 7.5. The results for the one-site model (/= 0) are identical to those
given in Figure 7.5. For f=1 the problem is again reduced to the equilibrium CDE with R = 5; this
case is identical to the BTC for a~« in Figure 7.5. Notice that the concentration peak appears earlier

as f decreases, while at the same time the concentration peak increases.
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Fig. 7.6. Breakthrough curves according to the two-site nonequilibrium CDE
for four values of fassuming: (a) #=0.08 d"' and (b) a=0.2d"".

The additional nonequilibrium parameter in the two-site model, £, gives more flexibility in the
estimation procedure than the one-site model. However, if R needs to be estimated in addition to the
nonequilibrium parameters, @ and £, it is not always possible to find a unique solution to the inverse
problem. As an example, Figure 7.7a presents two breakthrough curves calculated with different
values for R, @, and /. The solid line in Figure 7.7a is identical to the curves for f= 0.3 in Figure 7.6a.
If we neglect the effects of dispersion (i.e., P-) and kinetic adsorption (i.e., @=0) in equation (3.3),
the product AR is equivalent to the number of pore volumes, 7, at which the solute initially appears

in the effluent [Parker and van Genuchten, 1984b]. We used R = 10 and f= 0.135 to calculate the
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BTC given by the dashed line in Figure 7.7a — this curve has the same value of 0.22 for /R as the

solid curve. Furthermore, we can adjust « to obtain the same peak concentration and an almost

identical BTC with some minor differences in the tailing end of the BTC. Figure 7.7a implies that,

in general, at least R (i.e., the distribution coefficient, X,) should be estimated independently.

0.4

0.3 4

T 1 T T L]

(a) Dirac Input 1

Two-site Model

R=5 0=0.08d" f=03 |
R=10 a=0.028 d"' f=0.135 |

-
---------------------------------------

Fig. 7.7. Breakthrough curves for SR = 0.22, using different sets of R, &, and f, calculated with the
two-site nonequilibrium CDE for: (a) Dirac delta input, and (b) pulse input of 5d.
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Figure 7.7b presents two BTCs for a pulse input of 5 days using the same set of parameters as
in Figure 7.7a. Differences between the BTCs predicted with the two different data sets are more
pronounced for the pulse input than for the Dirac input. The enhanced tailing for the pulse input will
likely somewhat improve the estimated transport parameters in the two-site model.

Since the two-fegion nonequilibrium model is mathematically identical to the two-site model (cf.
Section 3.1.3), we may conclude from the above that different sets of R, @, and 6, also may lead to
nearly identical concentration profiles. For reactive solutes, the fraction, £, of adsorption sites in
contact with the mobile liquid phase will cause additional uncertainty in the parameter estimation.
When the BTCs for reactive solutes are analyzed in terms of the two-region model, it is best to
estimate 6, from data for a nonreactive tracer (see also Figure 7.9).

The last example involving a direct problem concerns deterministic nonequilibrium transpdrt as
described by an initial value problem (IVP). Figure 7.8 shows equilibrium (C,) and nonequilibrium
(C,) resident concentration profiles at 7'= 1.0 for three values of the partitioning coefficient 5. The
example involves the application of a solute-free solution to a soil with a stepwise initial solute
distribution (dashed line in Fig. 7.8), assuming P =10, R=2, w=1, and p, = 4, = 0.2. Figure 7.8
shows that solutes are transported more slowly when fis relatively small, i.e., when a relatively large
- amount of solute resides in the nonequilibrium phase. Hence, leaching is not as effective when Sis
small. Notice also that the discontinuity in the nonequilibrium concentration, C,, persists much longer
when Bis small. The discontinuity persists because solute removal and subsequent leaching from the
nonequilibrium phase can only occur indirectly through the equilibrium phase after the solute has
kinetically desorbed from the adsorbed to the solution phase (the one- or two-site adsorption models),
or has diffused from immobile to mobile water (the two-region model). The nonequilibrium profiles
closely resemble the equilibrium when fis large because of increased opportunity for the relatively

small amount of solute in the nonequilibrium phase to move to the equilibrium phase.
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Fig. 7.8. Calculated concentration versus depth for an IVP using:
(@) p=0.1,(b) B=05,and (c) 5=0.9.
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7.2.2. Parameter Estimation

Several examples below illustrate the use of CXTFIT 2.1 to estimate parameters involving the
nonequilibrium deterministic model. The first example deals with two-region nonequilibrium
transport of tritiated water through a Glendale clay loam [Experiment 3-2 of van Genuchten, 1974].
A *H,0 pulse of duration 7', = 3.102 was applied to a 30-cm long column, and the BTC was
determined from the effluent. The volumetric water content, 6, was 0.454 while the pore-water
velocity, v, was equal to 37.5 cm d™'. Assuming that R = 1 for *H,0, we only have to estimate (=
6,/6) and w from the measured BTC. Figure 7.9a compares the observed and fitted BTCs. The
number of pore volumes, 7, was used as the dimensionless time in this example (NREDU = 2). We
emphasize that v (= v,,6,/6) and D (= D,,0,/0) are used as the unknown input parameters, instead
of v, and D, which appear in the two-region physical nonequilibrium model (Table 6.7). The fitted
values were D = 15.5 cm* d”!, 6,/6= 0.822, and w = 0.85. These values correspond to v, = 45.6
ecmd?!,D,=189cm?’d ™}, and =0.48 d".

A pulse of boron tracer was also applied for 7, = 6.494 pore volumes to the same column as used
in Figure 7.9a [Exp. 3-1 of van Genuchten, 1974]. The estimated parameters were v=38.5 cmd™*
andR=3.9(K,=1.04 g cm’, p,=1.222 gcm, and = 0.445). We assumed that D and 8,/ 6are
identical for boron and *H,O (Figure 7.9a). Figure 7.9b shows the observed and fitted BTCs with
parameters /= 0.578 and w=0.70 (¢=0.40 d"). Substituting 8,/6= 0.822, as obtained from the
H,0 BTC, into the expression for ﬂ (cf. Table 3.1) yields f= 0.49 for the fraction of sorption sites
in contact with the mobile phase. |

The boron data are the same as those shown in Figure 5 of the previous CXTFIT manual [Parker
and van Genuchten, 1984b] when four parameters (D, R, 3, and w) were estimated. Table 7.2 shows
the effect of having different initial estimates and number of unknown parameter on the optimization
of the boron BTC given in Figure 7-9b — similar information was previously shown in Table 3 of
Parker and van Genuchten [1984b). Two different sets of initial estimates were used to estimate
either two (i.e., f/ and w, with D obtained by fitting the *H,0 BTC) or three (i.e., D, 8, and w)
parameters. For the two-parameter estimation, £ and w converged to almost identical results
regardless of the initial estimates. If D was also optimized, the final results depended greatly on the

initial estimates. The results for the three-parameter estimation in Table 7.2 were quite dissimilar

98




although only the initial value for § was different in the two examples. Since the product AR
determines the number of pbre-volumes, T, at which the tracer initially appears in the effluent, it is
important to provide a reasonable initial estimate for fR. If R is fitted as well — in addition to D,
B, and @ such as in Table 3 in Parker and van Genuchten [1984b] — the likelihood that the
optimization does not converge to the correct solution will increase. Figure 7.7 suggests that
different parameter sets can yield very similar cﬁrves. This occurs when the response surface (i.e.,

the objective function, SSO(b)) has a flat surface near the global minimum or when multiple local

minima exist.
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Fig 7.9. Breakthrough curves for a Glendale clay loam described by the two-region
physical nonequilibrium model for nonreactive *H,0 and reactive boron.
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Table 7.2. Fitted Parameter Values and the Coefficient of Determination,
¥, for the Optimization of the boron BTC for
Different Sets of Initial Estimates

Example v D R Y] w r

(a) Two parameter (f, w) estimation

Initial values 38.5 15.5 3.9 0.5 0.2 -
Final values fixed fixed fixed 0.58 0.70 0.970
Initial values 38.5 15.5 3.9 0.1 0.2 -
Final values fixed fixed fixed 0.58 0.70 0.970

(b) Three parameter (D, f, ) estimation

Initial values 38.5 15.5 3.9 0.5 0.2 -
Final values fixed 50.2 - fixed 0.647 0.46 0.978
Initial values 38.5 15.5 3.9 0.1 0.2

Final valuest fixed 303.6 fixed 0.9999 100.0 0.942

t ,B and w reached the internal maximum constraints #=0.9999 and w=100. The estimate for D
is almost identical to that obtained by fitting the equilibrium CDE to the observed data.

In most cases fand w will be obtained from a simultaneously fit. Rao et al. [1980], on the other
hand, attempted to independently predict w from the aggregate size for a medium consisting of
uniform spherical aggregates. Nonequilibrium transport of a reactive solutes is probably best studied
with experiments that observe the movement of reactive and nonreactive solutes (cf. Figure 7.9). As
a first approximation, we can then assume that such parameters as D and @, are the same for both

types of solute.
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7.3. Stochastic CDE (MODE>3)

7.3.1. Nonreactive Solute Transport

Direct Problem
First we consider equilibrium transport of a nonreactive solute (R = 1) at the local scale as

discussed in Section (4.2). Figure 7.10 shows the mean, &, = <¢,>, and the variance according to
(4.20) as a function of depth at 7= 3 d for three values of g, as result of a 2-d solute application to
a solute-free soil assuming <v>=20 cm d™! and <D>=20 cm® d"' with a constant dispersivity (g, =a,).
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Fig. 7.10. The effect of the variability in the pore-water velocity, v, on:
(a) the field-scale resident concentration (¢,) profile, and (b) the
distribution of the variance for ¢, in the horizontal plane.
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Solute spreading in the é,-profile increased with g, as indicated in Figure 7.10a. - Figure 7.10b
shows that variations in the local-scale ¢, also increased with o, thereby suggesting that a more
heterogeneous solute distribution will occur in the horizontal plane. Because flow and transport
become increasingly heterogeneous as g, increases, more observations are needed to reliably estimate
field-scale concentrations. Note that the variance profiles have a double peak (Figure 7.10b). The
variance has a relative minimum around x = 30 cm where the highest concentration occurs (Figure
7.10a). Similar bimodal behavior of the variance was observed numerically by Burr et al. [1994] for
transport in a three-dimensional heterogeneous medium. The variance also depends on the duration
of the solute application time. As the application time increases, continued solute injection will
counteract the randomness due to variations in transport properties between stream tubes.

Figure 7.11 presents BTCs for three types of field-scale concentrations (&, ¢, and <c>) as aresult
of a Dirac input assuming <v>= 50 cm d”!, <D>= 200 cm*d™", and 0, = g, =0.5. The BTC for &
has the highest peak at a relatively early time, while ¢, and <¢> show similar distributions. The local-
scale concentration mode apparently has little influence on the field-scale average when the velocity
is stochastic. A relatively large value for <D> was selected to demonstrate the difference between

¢, and <c>. These two concentrations would be very similar for smaller <D> (e.g., 20 cm® d ™).
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Fig. 7.11. Breakthrough curves for three types of field-scale concentration modes.
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The mean breakthrough time and the amount of spreading are smaller for ¢, than for ¢, or <c>.
All concentrations are almost identical at 7= 2 d, which is the mean breakthrough time for &,[Toride
and Leij, 1996a]. Solutes will only reach x = 100 cm prior to #= 2 d if it travels in stream tubes with
a velocity greater than the ensemble average, <v>. The velocity-weighted concentration, &,should
therefore be greater than the ensemble-averaged concentrations, &, and <c;>, during the initial stages
of the displacement process (<2 d). On the other hand, &;becomes less than &, or <cp> at later times
(t>2d).

Parameter Estimation

There are ‘}ery few data sets that allow solution of the inverse problem for the stream tube model.
The same data as those of Figure 7a in the CXTFIT manual by Parker and van Genuchten [i984b]
were used to demonstrate parameter estimation for the stochastic stream tube model. The example
pertains to resident concentrations of a 0.64-ha field to which a bromide pulse was applied for 1.69
d followed by leaching with solute-free water [Jury et al., 1982]. The stream tube model can be

adapted for transient flow conditions as shown by Parker and van Genuchten [1984b, p. 41].

0.10 , , . ,
0.08 Xx=30cm |
[ )
0.06 - fitted
<O 1 ° observed -
0.04 - T
0.02 - | -
®
i ®
0.00 T 1 T 7 .——’
0 20 40 60
t (d)

Figure 7.12. Observed and fitted values of ¢, for field-scale transport
of bromide (after Jury et al. [1982]).
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The dispersivity, 4, was assumed to be constant with p,, = 1; the following parameters should
hence be used in the input file: MODE =3 and g, = g, (cf. Eq. (4.25) and Table 6.7). Solution of
the inverse problem yielded: <v>=30.5mm d™!, <D>=2.5mm?d™}, and 0,= 0.8 mm d", and 0, =
0.8 mm? d"!. The estimates for <v> and o, are identical to those by Parker and van Genuchten
[1984b], whereas <D> was about ten times smaller. Local dispersion typically has a minor effect on

the field-scale concentration (cf. Parker and van Genuchten [1984b] and Toride and Leij [1996a)).
7.3.2. Reactive Solute Transport

Direct Problem

In addition to the variability in v and D, we may also need to consider the variability in the
distribution coefficient, K, and the nonequilibrium rate parameter, & when modeling the field-scale
transport of reactive solutes. The effect of a stochastic v or K, on field-scale concentrations is first
demonstrated for equilibrium transport using MODE = 3. The field-scale resident concentration, &,,
at £= 13 d resulting from a Dirac delta input at =0, is plotted versus depth in Figure 7.13 for either
perfect or no correlation betweenvand K. Values of the transport parameters are: <v>=50 cmd™,
D=20cm*d,<K,>=1g"'cem’, 0,,,=02g "' cm®, <R>=35,and p,/0=4 gcm>. |
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Fig. 7.13. Effect of the correlation between v and K on field-scale
resident concentration (¢,) profiles.
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A negative correlation between v and K, implies that R and v are inversely related; such a
correlation causes additional spreading in the field-scale concentration. The effect of variability in
K, on solute spreading, as observed from the results of the relatively simple stream tube model, is
quite similar as observed using more general stochastic approaches [e.g., Bosma et al., 1993].

If solutes are not adsorbed instantaneously, the field-scale concentration may be predicted with
the nonequilibrium transport models defined by (4.1) and (4.2). In the next example we assume that
the nonequilibrium rate coefficient, &, is deterministic (MODE =4). Figure 7.14 shows the field-scale
resident (¢,) and total resident (£;) concentrations versus depth at #= 1 d. The stochastic parameters
are v and K, with p,, = -1, while the deterministic rate parameter (actually the dimensionless
parameter, «) is given by: (a) a=2.5d", (b) #=0.5d}, and (c) = 0.1 d"'. All other parameters
were taken to be the same as those used for Figure 7.13. Differences between ¢, and &, reflect the
amount of adsorbed solutes. As & decreases, some of the solute will not be readily adsorbed and
hence is transported downgradient relatively quickly. On the other hand, a relatively large fraction

of the solutes will be adsorbed near the surface in case of an increased a.
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Fig. 7.14. Nonequilibrium field-scale transport for negatively correlated v and K.
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Parameter Estimation

As for nonreactive solutes, there is a general lack of suitable data for estimating transport
parameters in the stream tube model for reactive solutes. We will therefore use a hypothetical data
set to illustrate the solution of the inverse problem in CXTFIT 2.1 for stochastic transport of reactive
solutes. Furthermore, the solution of the inverse problem is far more complicated since both the
variability in v or D as well as @ or K, [Robin et al., 1991] may have to be considered. Figure 7.15
shows predicted resident concentrations, &, after a solute pulse is applied for one day; the following
model parameters were used: <v>=50cmd ™, D=20cm’d’, <K,>=1g"' em’, g,=03 g"' cr’,
<R>=S5, p,/@=4gcm> and p,,=-0.8 (MODE = 3). The standard deviation, & ,, and the
coefficient of correlation between v and K, p x,, were fitted to the hypothetical data while keeping
<v>, g,, and <K > constant at the above values. The latter parameters could also have been estimated
from data for a nonreactive solute. The program converged to the correct parameter values, i.e.,
those that were used to generate the hypothetical data set, after just a few iterations. Unfortunately,
such good results are unlikely for most practical cases since the experimental conditions in most
heterogeneous fields will not conform exactly to the assumptions made for the stream tube model (cf.
Chapter 4).

0.15 v T y I Y T Y
d O-Kd = 0-3, vad - 0-8 i
0.10 4 -
<o 1 -
0.05 -
o.oo L] l ¥ I L] I ] T
0 50 100 150 200

X (cm)

Fig. 7.15. Estimation of gy, and p,,, by fitting the solution for the stream tube model
to hypothetical data, generated with a stochastic v and K,
assuming that <v>, g,, and <K > are known.
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8. SUMMARY AND CONCLUSIONS

The CXTFIT 2.1 program provides a convenient way of solving direct and inverse problems for
one-dimensional solute transport during steady water flow. Both equilibrium and two-site/two-region
type nonequilibrium transport models can be implemented — the transport equation contains terms
for convection, dispersion, linear adsorption, zero-order production, and first-order decay. Analytical
solutions for deterministic transport were given for a large number of boundary, initial, and
production value problems. CXTFIT 2.1 also includes a stochastic transport model that views the
field as an assembly of deterministic flow and transport paths; these are referred to as stream tubes
for one-dimensional flow and transport. Transport in each stream tube is modeled deterministically
with the convection-dispersion equation using as random parameters v and either D, K, or &. The
random parameters are described with a bivariate lognormal probability density function. Solute
concentrations across the field, in either the resident or ﬂuX—averaged mode, were obtained by
averaging the concentrations of individual stream tubes.

Various transport parameters in the deterministic and stochastic transport models can be
estimated by CXTFIT 2.1 by fitting the pertinent analytical solution to solute (tracer) concentrations
obtained in the laboratory or field. As discussed in Chapter 5, the estimation procedure uses a
nonlinear least-squares inversion method according to Marquardt [1963]. While the procedure has
been shown to work for many examples, users should remain cognizant of potential problems
involving convergence and parameter uniqueness. This is especially true when the stream tube model
is used for optimizing data obtained across the field. Chapter 6 contains a detailed and schematic
outline of the settings and variables for each solution of the direct or inverse problemin CXTF IT2.1.
The use of the program is further illustrated in Chapter 7, which contains a variety examples
regarding the prediction of solute profiles and the analysis of experimental data to estimate

parameters in deterministic and stochastic solute transport models.
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APPENDIX: LIST OF SIGNIFICANT PROGRAM VARIABLES

Table Al. List of Integer Variables

ICHEB

ILMT
ISKIP

INVERSE

MIT
MASS
MASSST
MAXTRY

MAXOB
MCON

MCORR

MDEG

MNEQ
MODB
MODC
MODD

MODE
MODI
MODJH

MODK

MODP
MODP1

Integration code for Gauss Chebyshev. IfICHEB = 1, the number of integration points will increase
until the result satisfies the error criterion (default is ICHEB = 1 in the subroutine CONST1, blank
common).

Parameter constraint code (Table 6.4).

Calculation control code for the evaluation of the integral limits; ISKIP = 0 to evaluate the limits;
= 1 to skip evaluation (the subroutine Model, MODAT common).

Calculation control code for the numerical integration for the stochastic CDE in subroutine
STOCDE (INTM = 1 for log-transformed Romberg; = 2 for log-transformed Gauss-Chebyshev,
default is INTM = 1).

Calculation control code for direct and inverse problems (Table 6.3, MODAT common).

File unit number.

Maximum number of iterations (Table 6.4, MODAT common).

Total mass estimation code (Table 6.4, MODAT common).

Mass distribution index for the stochastic CDE (MODB = 1, 3 in Table 6.7, BOUND common).
Maximum number of trials to find new parameter values without a decrease in the SSQ (It is
suggested that MAXTRY be in the range 10 to 50; smaller values may reduce the run time but no
convergent solution may be found. Default is 50 in the subroutine CONST1).

Maximum number of data (Main program).

Calculation control code for concentrations (MCON = 0, Calculate equilibrium and nonequilibrium
concentrations; = 1 only equilibrium; = 3 only nonequilibrium, blank common). .

Index for stochastic v and n defined in subroutine MODEL; MCORR = -1 for perfect negative
correlation between v and #; = 0 for uncorrelated v and #; = 1 for perfect positive correlation
between v and 77, = 2 for other correlation (STOCH common).

Degradation estimation code for the nonequilibrium CDE (Table 6.4, MODAT common).

Initial number of integration points for Gauss Chebyshev (default is 75 in subroutine CONST1,
blank common).

Nonequilibrium model code (Table 6.4, MODAT common).

Boundary value problem code (Table 6.7, BOUND common).

Concentration mode (Table 6.3, blank common).

Index for a stochastic dispersion coefficient defined in subroutine CHECK; MODD = - 1, perfect
negative correlation between v and D; = 0, deterministic D; = 1 perfect positive correlation; = 2, g,
= g;, constant field-scale dispersivity (STOCH common)

Model code (Table 6.3, blank common).

Initial value problem code (Table 6.8, INITI common).

Calculation control code for step input in subroutine BOUND (MODJH = 0, evaluate (3.23) or
(3.24); = 1, (3.21) or (3.22) based on Goldstein's J-function, default is MODJH = 1).

Index for a stochastic distribution coefficient defined in subroutine CHECK; MODK = -2 for g, =
Oxa;, = - 1 for perfect negative correlation between v and K, = 0 for deterministic K; = 1 for perfect
positive correlation (STOCH common). ' '
Production value problem code (Table 6.9, PROD common).

Calculation control code for constant production for the equilibrium CDE in subroutine PRODUC
(MODP1 = 0 to evaluate the integral in (2.32); = 1 for (2.33) or (2.34), default is MODP1=1).
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Table Al. (continued)

MPRINT
MFRO
MSD

MSTOCH
NC

NIT

NOB
NPRO1

NPRO2

NPULSE
NREDU

Output print code for direct problem (Table 6.11).

Production function code for a nonequilibrium phase (Table 6.9).

Calculation control code for ensemble averages defined in subroutine STOCDE; MSD = 0, <C> ;
= 1, <C%, (STOCH common).

Index for stochastic v and 1 defined in subroutine MODEL; MSTOCH = 1 for variable v and
deterministic #; = 2 for deterministic v and variable #; = 3 for perfect correlation between v and 1;
= 4 for variable v and variable 5 (STOCH common).

Number of cases considered (Table 6.3, Main program).

Number of errors in an input file (subroutine CHECK).

Number of steps for stepwise initial distribution (Table 6.8, INITI common).

Number of iteration trials in the least square analysis (Main program).

~ Number of observations (cannot exceed MAXOB).

Number of parameters to be fitted to the data (Main program).

Number of steps for stepwise production profile in an equilibrium phase (Table 6.9, PROD
common).

Number of steps for stepwise production profile in an nonequlhbnum phase (Table 6.9, PROD
common).

Number of pulses for multiple pulse input (Table 6.7, BOUND common).

Data input and output code (Table 6.3, MODAT common).

Number of output times for a direct problem (Table 6.11).

Number of transport parameters (subroutine DATAIN).

Number of trials to decrease SSQ (Main program).

Value of NVAR + 1 (Main program, subroutine DATAIN)

Value of NVAR x 2 (Main program, subroutine DATAIN).

Total number of parameters (subroutine DATAIN, MODAT common).

Number of output positions for a direct problem (Table 6.11).
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Table A2. List of Real Variables

Aor AA
AVEV
ALPHA
ANGLE
Bor BB
BETA
BETR
BMASS
CBOU1

- CBOU2

CINT1
CINT2
CORR

- CPRO1
CPRO2
CX

D or DIS
DA

DK
DMASS
DMU1
DMU2
DT
DUMTZ

DZ -
GA
GD

LEVEL

OMEGA
OMMAX
P or PEC
RorRE
PHIIM
PHIM

RHOTH
SDLND
SDLNV
SDLNY
SSQ
STEP
STOPCR

«(@+uy) AR defined in subroutine DETCDE (blank common).

Mean pore-water velocity, <v> (subroutine CONPROY).

First-order kinetic rate coefficient, « (STOCH common).

Deviation of the correction vector from the steepest descent direction (Main program).
(wtpy)/(1-PR defined in subroutine DETCDE (blank common).

Partition coefficient, § (blank common).

Value of # x R (blank common).

Mass for Dirac delta input (subroutine BOUND).

Equilibrium concentration for boundary value problem (subroutine DETCDE).
Nonequilibrium concentration for boundary value problem (subroutine DETCDE).
Equilibrium concentration for initial value problem (subroutine DETCDE).
Nonequilibrium concentration for initial value problem (subroutine DETCDE).
Correlation coefficient between v and 7 for stochastic model, Py, (STOCH common).
Equilibrium concentration for production value problem (subroutine DETCDE).
Nonequilibrium concentration for production value problem (subroutine DETCDE).
w/(wty,) defined in subroutine DETCDE (blank common).

Dispersion coefficient, D (STOCH common).

wu,f(wtu,) defined in subroutine DETCDE (blank common).

Distribution coefficient for liner adsorption, X, (STOCH common).

Mass for a Dirac delta initial condition (subroutine INITIAL).

First-order decay coefficient in an equilibrium phase, u” or u,, (blank common).
First-order decay coefficient in a nonequilibrium phase, ,, (blank common).

Time increment for output in a direct problem.

Time or position for the solute profile or breakthrough for INPUTM = 1

in an inverse problem (Table 6.10).

Spatial increment for output in a direct problem.

Constant for the Levenberg-Marquardt method (default is 0.01 in subroutine CONST1).
Trial and error factor for GA for the Levenberg-Marquardt method (default is 10 in subroutine
CONST?).

The maximum order for the log-transformed Romberg integration (the value will be adjusted
internally depending on the Peclet number in subroutine CONST2, blank common).
Mass transfer coefficient, @ (blank common). ;

Maximum constraint for w (default is 100 in subroutine CONST1).

Peclet number (blank common).

Retardation factor (blank common).

Immobile water fraction for the physical nonequilibrium CDE, 8,/6 (MODAT common).
Mobile water fraction for the physical nonequilibrium CDE, ¢,= 6 ,/6 (Table 6.4, MODAT
common).

p,/ 6 for the stochastic CDE (STOCH common).

Standard deviation of In D, g, (STOCH common).

Standard deviation of In v, g, (STOCH common).

Standard deviation of In #, 0, (STOCH common).

Sum of squared residuals (Main program).

Scale factor for the correction vector (Main program).

Iteration criterion. The curve-fitting process stops when the relative change in the ratio of all
cocfficients becomes less than STOPCR (default is 0.0005 in subroutine CONST1).
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